## Exam II

## Choose 5 questions below.

1. Prove that if a increasing sequence  $x_n$  has a convergent subsequence  $x_{n_k}$  then  $x_n$  is convergent. Hint: Remember that every bounded monotone sequence converges.

Solution. It suffices to show that  $x_n$  is bounded. Since  $x_{n_k}$  converges, it is bounded, say  $x_{n_k} \leq M$ . Now, for any  $n \in \mathbb{N}$ , we can find  $n_k > n$ , but then  $x_n < x_{n_k} \leq M$ . It follows that  $x_n$  is bounded by M as well.

- 2. Show that  $\sum \frac{\ln n}{n^3}$  converges. Hint: Remember that  $\ln n < n$ . Solution. Notice that  $\frac{\ln n}{n^3} < \frac{1}{n^2}$ . Since  $\sum \frac{1}{n^2}$  converges,  $\sum \frac{\ln n}{n^3}$  converges by comparison.
- 3. Let  $x_n$  be a sequence defined by

$$x_n = \begin{cases} n, & \text{if } n \text{ is odd,} \\ \frac{1}{n}, & \text{if } n \text{ is even.} \end{cases}$$

Find all accumulation points of  $x_n$ . Does  $x_n$  converge?

Solution. Notice that  $x_{2n-1}=2n-1$  diverges, so  $x_n$  has a divergent subsequence, hence it can't converge. If a is an accumulation point, it is the limit of a subsequence, say  $x_{n_k}$ , of  $x_n$ . The indexes  $n_k$  have to be necessarily even, otherwise  $x_{n_k}$  doesn't converge. But  $x_{2n-1} \to 0$ , hence  $x_{n_k} \to 0$ . It follows that a=0, so 0 is the only accumulation point.

4. Give an example of a convergent series  $\sum a_n$  and a bounded sequence  $b_n$  such that  $\sum a_n b_n$  is divergent. Hint: Remember for example that  $\sum \frac{(-1)^n}{n}$  converges.

Solution.  $a_n = \frac{(-1)^n}{n}$  and  $b_n = (-1)^n$ .

5. Let  $x_n$  be a sequence of positive numbers such that  $\lim x_n = a$ . Prove that

$$\lim \sqrt[n]{x_1 x_2 x_3 \dots x_n} = a.$$

Hint: Remember that if  $\frac{y_{n+1}}{y_n} \to c$  then  $\sqrt[n]{y_n} \to c$ .

Solution. Let  $y_n = x_1 x_2 x_3 \dots x_n$  then  $\frac{y_{n+1}}{y_n} = x_{n+1} \to a$ , hence  $\sqrt[n]{x_1 x_2 x_3 \dots x_n} = \sqrt[n]{y_n} \to a$ .

6. Let  $x_n$  be defined by  $x_1 = \sqrt{2}$  and

$$x_{n+1} = \sqrt{2 + x_n}$$

Show that  $x_n$  converges and find its limit.

Solution. We claim using induction that  $x_n$  is increasing. Start by noticing that  $\sqrt{2} = x_1 < x_2 = \sqrt{2 + x_1}$ . Suppose  $x_n < x_{n+1}$ . Then

$$2 + x_n < 2 + x_{n+1} \Rightarrow \sqrt{2 + x_n} < \sqrt{2 + x_{n+1}} \Rightarrow x_{n+1} < x_{n+2}$$

Now, suppose  $x_n$  converges to L, then taking the limit on  $x_{n+1} = \sqrt{2 + x_n}$  we obtain  $L = \sqrt{2 + L} \Rightarrow L^2 - L - 2 = 0$ . It follows that L = -1 or L = 2, since  $x_1 = \sqrt{2}$  and  $x_n$  increases, L = 2 is only possibility. We now prove that  $x_n$  converges. It suffices to show that  $x_n$  is bounded (since it's monotone). We claim by induction that  $x_n < 2$  for every n. The case n = 1 is clear, suppose  $x_n < 2$  then  $x_n + 2 < 2 + 2 \Rightarrow \sqrt{x_n + 2} < \sqrt{4} \Rightarrow x_{n+1} < 2$ .

7. Show that the series  $\sum \frac{1}{n^n}$  converges.

Solution. Notice that  $\sqrt[n]{\frac{1}{n^n}} = \frac{1}{n} \to 0 < 1$  as  $n \to +\infty$ . Hence the series converges by the root test.

8. Let a > 0 and  $a \neq e$ . Find

$$\lim \frac{a^n n!}{n^n}.$$

Hint: Remember that if  $\frac{x_{n+1}}{x_n} \to c < 1$  then  $x_n \to 0$ .

Solution. Let  $x_n := \frac{a^n n!}{n^n}$  then  $\lim \frac{x_{n+1}}{x_n} = \frac{a}{e}$ , if a < e then  $\lim \frac{x_{n+1}}{x_n} < 1$  and it follows that  $x_n \to 0$ . If a > e then  $\lim \frac{x_{n+1}}{x_n} > 1$ , hence  $x_n \to +\infty$ .