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Preface

This book is intended as a first rigorous introduction to Real Analysis, with a
focus on functions of a real variable. It is written for undergraduate students in
mathematics, but it may also serve as a reference for anyone seeking a clear and
rigorous introduction to the subject. The exposition is self contained and only
assumes a basic background in elementary mathematics.

A distinctive feature of the book is its balance between theory and practice.
Many theorems are followed by worked examples and exercises of varying dif-
ficulty, encouraging the reader to actively engage with the material and develop
problem-solving skills. The style is direct and concise, yet aims to be accessible;
historical notes are included to give context and show the evolution of ideas in
mathematics.

The text begins with set theory and the real number system, then moves
through sequences, limits, continuity, derivatives, and integrals, ending with
more advanced topics such as uniform convergence and power series. Each
chapter blends theory with examples, and includes exercises to reinforce under-
standing and encourage active learning. My goal is to make the subject clear,
precise, and engaging, while maintaining the rigor essential to mathematical
analysis.

I hope readers will not only master the techniques but also appreciate the
beauty and logic that make Real Analysis a central part of mathematics.

San Antonio, TX, August 2025
Genival Silva
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Chapter 1
Naive Set Theory

In this chapter, we will introduce the notions of sets and functions. These are
fundamental notions that will be used extensively throughout the remainder of
the text. In fact, the main goal of this textbook is to study functions of a real
variable defined on subsets of the real number field. We will begin this study
with basic definitions related to sets, then the natural numbers will be introduced,
and finally, we will compare the naturals with various types of sets.

1.1 Sets

A set 𝑋 is a collection of objects, also called the elements of the set. If ‘𝑎’ is an
element of 𝑋 , we write 𝑎 ∈ 𝑋 . On the other hand, if ‘𝑎’ isn’t an element of 𝑋 ,
we write 𝑎 ∉ 𝑋 .

A set 𝑋 is well defined when there is a rule that allows one to precisely
determine if an arbitrary element ‘𝑎’ is or is not an element of 𝑋 .

Example 1.1. The set 𝑋 of all right triangles is well-defined. Indeed, given any
object ‘𝑎’, if ‘𝑎’ is not a triangle or does not have a right angle then 𝑎 ∉ 𝑋 . If
‘𝑎’ is a right triangle, then 𝑎 ∈ 𝑋 .

Example 1.2. ∗ The set 𝑋 of all sets that are not members of themselves is not
well-defined, because we cannot say whether 𝑋 , as an element itself, is or is not
an element of 𝑋 . If 𝑋 is an element of 𝑋 , then by the definition of 𝑋 , 𝑋 is not
in 𝑋 . Conversely, if 𝑋 is not in 𝑋 , then 𝑋 is in 𝑋 .

Usually one uses the notation

𝑋 = {𝑎, 𝑏, 𝑐, . . .}

∗ This example is known as Russell’s Paradox. After its publication in 1901, Ernst Zermelo proposed
an axiomatic theory of sets where the notion of a set is made more precise.

1



2 1 Naive Set Theory

to represent the set 𝑋 whose elements are 𝑎,𝑏,𝑐, and so on. If a set has no
elements, we denote it by ∅, and call it the empty set.

The set of natural numbers 1, 2, 3, . . . will be denoted by

N = {1, 2, 3, . . .}

The set of integers will be denoted by

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

The set of rational numbers, that is, fractions 𝑎
𝑏
, where 𝑎, 𝑏 ∈ Z and 𝑏 ≠ 0, will

be denoted by
Q =

{ 𝑎
𝑏
| 𝑎, 𝑏 ∈ Z, 𝑏 ≠ 0

}
.

In chapter 2, we will formally define the set of real numbers, denoted by R. For
now, we consider the set R of real numbers to consist of all numbers that have a
decimal representation.Bertrand Russell was a British

philosopher and mathematician. He
had a significant influence on the
foundations of mathematics, espe-
cially in set theory.

The vast majority of sets in mathematics are not defined by specifying their
elements one by one. What usually happens is that a set is defined by some
property its elements satisfy; i.e., if 𝑎 has property 𝑃, then 𝑎 ∈ 𝑋 , whereas if 𝑎
does not have property 𝑃, then 𝑎 ∉ 𝑋 . One writes

𝑋 = {𝑎 | 𝑎 has property 𝑃} or 𝑋 = {𝑎 ; 𝑎 has property 𝑃}

both notations will be used in the text.

Example 1.3. The set
𝑋 = {𝑎 ∈ N | 𝑎 > 10},

consists of all natural numbers greater than 10, namely, 𝑋 = {11, 12, 13, . . .}.
Given two sets 𝐴 and 𝐵, one says that 𝐴 is a subset of 𝐵, or that 𝐴 is included

in 𝐵 (i.e., 𝐵 contains 𝐴), denoted by 𝐴 ⊆ 𝐵, if every element of 𝐴 is also an
element of 𝐵.

When one writes 𝑋 ⊆ 𝑌 , it is possible that 𝑋 = 𝑌 . In the case where 𝑋 ≠ 𝑌 ,
we say that 𝑋 is a proper subset. The notation 𝑋 ⊊ 𝑌 is sometimes used to
indicate that 𝑋 is a proper subset of 𝑌 .
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Fig. 1.1: Picture of a set 𝑋 as a subset of 𝑌 .

Example 1.4. We have the obvious inclusion of sets:

N ⊆ Z ⊆ Q ⊆ R.

Example 1.5. Let 𝑋 be the set of all squares and 𝑌 be the set of all rectangles.
Then 𝑋 ⊆ 𝑌 , since every square is a rectangle.

Notice that to write 𝑎 ∈ 𝑋 is equivalent to say {𝑎} ⊆ 𝑋 . Also, by definition,
it’s always true that ∅ ⊆ 𝑋 for every set 𝑋 .

It’s easy to see that the inclusion of sets has the following properties:

1. Reflexive: 𝑋 ⊆ 𝑋 for every set 𝑋;
2. Antisymmetric: if 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑋 , then 𝑋 = 𝑌 ;
3. Transitive: if 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑍 , then 𝑋 ⊆ 𝑍 .

It follows that two sets 𝑋 and 𝑌 are the same if and only if 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑋 ,
that is, they have the same elements.

The power set of the set 𝑋 , denoted byP(𝑋), is defined as the set

P(𝑋) = {𝐴 | 𝐴 ⊆ 𝑋 }.

The set P(𝑋) denotes the collection of all subsets of the set 𝑋 . In particular, it
is never empty, as it always contains at least the empty set ∅ and the set 𝑋 itself.

Example 1.6. Let 𝑋 = {1, 2, 3} then

P(𝑋) = { ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Notice that, by using the Fundamental Counting Principle, any set with 𝑛 ele-
ments has 2𝑛 subsets. Therefore, the number of elements of P(𝑋) is 2𝑛.

Given two sets 𝑋 and 𝑌 , one can build many other sets. For example, the
union of 𝑋 and 𝑌 , denoted by 𝑋 ∪ 𝑌 , is the set of elements that are in 𝑋 or 𝑌 .
More precisely:
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𝑋 ∪ 𝑌 = { 𝑎 | 𝑎 ∈ 𝑋 or 𝑎 ∈ 𝑌 }.
Similarly, the intersection of 𝑋 and 𝑌 , denoted by 𝑋 ∩ 𝑌 is the set of elements
that are common to both 𝑋 and 𝑌 :

𝑋 ∩ 𝑌 = { 𝑎 | 𝑎 ∈ 𝑋 and 𝑎 ∈ 𝑌 }.

If 𝑋 ∩ 𝑌 = ∅, then 𝑋 and 𝑌 are said to be disjoint.

Example 1.7. Let 𝑋 = {𝑎 ∈ N | 𝑎 ≤ 100} and 𝑌 = {𝑎 ∈ N | 𝑎 > 50} then

𝑋 ∪ 𝑌 = N and 𝑋 ∩ 𝑌 = {𝑎 ∈ N | 50 < 𝑎 ≤ 100}

Example 1.8. Consider the sets

𝑋 = {1, 2, {3}} and 𝑌 = {{1, 2}, 3}

Then 𝑋 ∩ 𝑌 = ∅, 𝑋 ∪ 𝑌 = {1, 2, 3, {1, 2}, {3}}.
Example 1.9. The sets 𝑋 = {𝑎 ∈ N | 𝑎 > 1} and 𝑌 = {𝑎 ∈ N | 𝑎 < 2} are
disjoint, since there is no natural number between 1 and 2.

The difference between 𝑋 and𝑌 , denoted by 𝑋 −𝑌 is the set of elements that
are in 𝑋 but not in 𝑌 , more precisely:

𝑋 − 𝑌 = { 𝑎 | 𝑎 ∈ 𝑋 and 𝑎 ∉ 𝑌 }.

Given an inclusion of sets 𝑋 ⊆ 𝑌 , the complement of 𝑋 in 𝑌 is the set 𝑌 − 𝑋 .
The notation 𝑋𝑐 is sometimes used when there is no ambiguity about the set 𝑌 .

Example 1.10. Let 𝐴, 𝐵 ⊆ 𝑋 . Then 𝐴∩ 𝐵 = ∅ if and only if 𝐴 ⊆ 𝐵𝑐. Indeed, if
𝐴 ∩ 𝐵 = ∅ then 𝑥 ∈ 𝐴 ⇒ 𝑥 ∉ 𝐵, hence 𝐴 ⊆ 𝐵𝑐. Conversely, suppose 𝐴 ⊆ 𝐵𝑐.
Assume, by contradiction, that 𝐴 ∩ 𝐵 ≠ ∅, and let 𝑥 ∈ 𝐴 ∩ 𝐵. Then 𝑥 ∈ 𝐴

and 𝑥 ∈ 𝐵, in particular 𝑥 ∉ 𝐵𝑐, contradicting the assumption that 𝐴 ⊆ 𝐵𝑐.
Therefore, 𝐴 ∩ 𝐵 = ∅.

Example 1.11. Consider the sets 𝑋 = {𝑎 ∈ N | 𝑎 is even} and 𝑌 = N. Then
𝑋 ⊆ 𝑌 and 𝑋𝑐 = {𝑎 ∈ N | 𝑎 is odd}. A similar example is Q ⊆ R, and Q𝑐 is
the set of all irrational numbers—those numbers that are not rational (i.e., not
expressible as fractions).

Example 1.12. Observe that Z − N is the set of all non-positive integers, in-
cluding zero. Similarly, the set Q − Z consists of all rational numbers that are
not integers. For example, 1

2 ∈ Q − Z.

Theorem 1.13. Given sets 𝐴, 𝐵, 𝐶, 𝐷 the following properties are true:

1. 𝐴 ∪ ∅ = 𝐴; 𝐴 ∩ ∅ = ∅
2. 𝐴 ∪ 𝐴 = 𝐴; 𝐴 ∩ 𝐴 = 𝐴

3. 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴; 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴
4. 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶; 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶
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5. 𝐴 ∪ 𝐵 = 𝐴⇔ 𝐵 ⊆ 𝐴; 𝐴 ∩ 𝐵 = 𝐴⇔ 𝐴 ⊆ 𝐵

6. if 𝐴 ⊆ 𝐵 and 𝐶 ⊆ 𝐷 then 𝐴 ∪ 𝐶 ⊆ 𝐵 ∪ 𝐷 and 𝐴 ∩ 𝐶 ⊆ 𝐵 ∩ 𝐷
7. 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶); 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)
8. (𝐴𝑐)𝑐 = 𝐴

9. (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐; (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐

Proof. We prove the last property, (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐. The others are trivial
or can be proved in a similar way.

We show that (𝐴 ∪ 𝐵)𝑐 ⊆ 𝐴𝑐 ∩ 𝐵𝑐. Let 𝑎 ∈ (𝐴 ∪ 𝐵)𝑐. Then 𝑎 ∉ 𝐴 ∪ 𝐵; in
particular, 𝑎 ∉ 𝐴 and 𝑎 ∉ 𝐵. Hence, 𝑎 ∈ 𝐴𝑐 ∩ 𝐵𝑐.

Conversely, take 𝑎 ∈ 𝐴𝑐 ∩ 𝐵𝑐. Then 𝑎 ∉ 𝐴 and 𝑎 ∉ 𝐵, so 𝑎 ∉ 𝐴 ∪ 𝐵, and it
follows that 𝑎 ∈ (𝐴 ∪ 𝐵)𝑐. ⊓⊔

An ordered pair (𝑎, 𝑏) is formed by two objects 𝑎 and 𝑏, such that for any
other such pair (𝑐, 𝑑):

(𝑎, 𝑏) = (𝑐, 𝑑) ⇔ 𝑎 = 𝑐 and 𝑏 = 𝑑.

The elements 𝑎 and 𝑏 are called coordinates of (𝑎, 𝑏): 𝑎 is the first coordinate,
and 𝑏 the second one.

Remark.
An ordered pair is not the same as a set; that is, (𝑎, 𝑏) ≠ {𝑎, 𝑏}. Notice that

{𝑎, 𝑏} = {𝑏, 𝑎}, but in general, (𝑎, 𝑏) ≠ (𝑏, 𝑎). The cartesian product 𝑋 × 𝑌
of two sets 𝑋 and 𝑌 is the set of all ordered pairs (𝑥, 𝑦) such that 𝑥 ∈ 𝑋 and
𝑦 ∈ 𝑌 :

𝑋 × 𝑌 = { (𝑥, 𝑦) | 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 }.
Example 1.14. The set N × N consists of all ordered pairs (𝑎, 𝑏) whose coor-
dinates are natural numbers.

Example 1.15. The sets Z× {0} and Z× {1} are disjoint. Additionally,N×N ⊆
Z × N ⊆ Z × Q.

Example 1.16. Consider the sets 𝑋 = {1, 2, 3} and 𝑌 = {0, 1}, then

𝑋 × 𝑌 = { (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1) }.

Example 1.17. The definition of the cartesian product can be generalized to
more than two sets. For example, given sets 𝑋 ,𝑌 ,𝑍 , one may define 𝑋 × 𝑌 × 𝑍
as the collection of all triples (𝑎, 𝑏, 𝑐), such that 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌, 𝑐 ∈ 𝑍 . In other
words:

𝑋 × 𝑌 × 𝑍 = { (𝑥, 𝑦, 𝑧) | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 }.
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1.2 Functions

A function 𝑓 : 𝑋 → 𝑌 consists of three components: a set 𝑋 , the domain; a set
𝑌 , the codomain; and a rule that associates each element 𝑎 ∈ 𝑋 with a unique
element 𝑓 (𝑎) ∈ 𝑌 . The value 𝑓 (𝑎) is called the value of 𝑓 at 𝑎, or the image of
𝑎 under 𝑓 .

Another common notation to denote a function is 𝑥 ↦→ 𝑓 (𝑥). In this case the
domain and codomain can be identified by the context.Gottfried Leibniz was a German

mathematician who, alongside Sir
Isaac Newton, is credited with the
creation of calculus. One of the ear-
liest definitions of a function is also
attributed to him.

Example 1.18. The function 𝑓 : N → N given by 𝑓 (𝑛) = 𝑛 + 1 is called the
successor function.

Example 1.19. Let 𝑋 be the set of all triangles. One can define a function
𝑓 : 𝑋 → R by 𝑓 (𝑥) = area of 𝑥.

Example 1.20. The correspondence that associates to each real number 𝑥 the set
of all 𝑦 satisfying 𝑦2 = 𝑥 is not a function, because any 𝑥 ≠ 0 is associated with
two values, namely ±

√
𝑥. In order to be a function, each 𝑥 must be associated

with exactly one value 𝑦 = 𝑓 (𝑥).
Example 1.21. A family of sets is a function 𝑋 : Λ → 𝑌 such that 𝑋 (𝑛) (also
denoted 𝑋𝑛) is a set for every 𝑛 ∈ Λ. The domain Λ is called the index set, and
when Λ = N, we call 𝑋 : N→ 𝑌 a sequence of sets. It’s customary to denote a
family of sets by

{𝑋𝑛}𝑛∈Λ
For example, the function 𝑋 : N→ P(N) given by

𝑋𝑛 = {𝑚;𝑚 ≥ 𝑛}

defines a sequence of (sub)sets.

The graph of a function 𝑓 : 𝑋 → 𝑌 is the subset of 𝑋 × 𝑌 defined by

Γ( 𝑓 ) = { (𝑥, 𝑓 (𝑥)) | 𝑥 ∈ 𝑋 }.

Example 1.22. The rule 𝑥 ↦→ 𝑒−𝑥
2 defines a function 𝑓 : R → R. This

function is extensively used in probability theory due to its unique properties. It
is commonly referred to as the Gaussian function.
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Fig. 1.2: The graph of the function 𝑓 (𝑥) = 𝑒−𝑥2 .

A function 𝑓 : 𝑋 → 𝑌 is said to be injective (or one-to-one) if, for every
𝑥, 𝑦 ∈ 𝑋 , whenever 𝑓 (𝑥) = 𝑓 (𝑦), it follows that 𝑥 = 𝑦. Similarly, a function
𝑓 : 𝑋 → 𝑌 is said to be surjective (or onto) if, for every 𝑦 ∈ 𝑌 , there exists
an 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑦. Finally, a function 𝑓 : 𝑋 → 𝑌 is bĳective (or a
bĳection) if it is both injective and surjective.

Example 1.23. The function given by 𝑓 (𝑥) = 𝑥3 is injective.

Fig. 1.3: The graph of the function 𝑓 (𝑥) = 𝑥3.

Example 1.24. Given a set 𝑋 ⊆ R, we denote by max 𝑋 , the largest element of
𝑋 . An example of a function that is not injective is given by the floor function
⌊𝑥⌋ = max{ 𝑛 ∈ Z | 𝑛 ≤ 𝑥 }.
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Fig. 1.4: The graph of the function 𝑓 (𝑥) = ⌊𝑥⌋.

Example 1.25. The function 𝑓 : (− 𝜋
2 ,

𝜋
2 ) → R given by 𝑓 (𝑥) = sin 𝑥 is a

bĳection.

Fig. 1.5: The graph of the function 𝑓 (𝑥) = sin 𝑥.

Given a function 𝑓 : 𝑋 → 𝑌 , the image of a set 𝐴 ⊆ 𝑋 is defined by

𝑓 (𝐴) = { 𝑦 ∈ 𝑌 | 𝑦 = 𝑓 (𝑎), 𝑎 ∈ 𝐴 }.

Conversely, the inverse image of a set (sometimes called pre-image) 𝐵 ⊆ 𝑌 is
defined by

𝑓 −1(𝐵) = { 𝑥 ∈ 𝑋 | 𝑓 (𝑥) ∈ 𝐵 }.
Theorem 1.26. Given 𝑓 : 𝑋 → 𝑌 and subsets 𝐴, 𝐵 ⊆ 𝑋 , we have:

1. 𝑓 (𝐴 ∪ 𝐵) = 𝑓 (𝐴) ∪ 𝑓 (𝐵); 𝑓 −1(𝐴 ∪ 𝐵) = 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵)
2. 𝑓 (𝐴 ∩ 𝐵) ⊆ 𝑓 (𝐴) ∩ 𝑓 (𝐵); 𝑓 −1(𝐴 ∩ 𝐵) = 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵)
3. if 𝐴 ⊆ 𝐵 then 𝑓 (𝐴) ⊆ 𝑓 (𝐵) and 𝑓 −1(𝐴) ⊆ 𝑓 −1(𝐵)
4. 𝑓 (∅) = ∅; 𝑓 −1(∅) = ∅
5. 𝑓 −1(𝑌 ) = 𝑋
6. 𝑓 −1(𝐴𝑐) = ( 𝑓 −1(𝐴))𝑐
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Proof. These properties follow directly from the definitions. We prove the last
one for clarity of exposition; the others can be established in a similar manner.

The last item follows from the following chain of equivalences:

𝑥 ∈ 𝑓 −1(𝐴𝑐) ⇐⇒ 𝑓 (𝑥) ∈ 𝐴𝑐 ⇐⇒ 𝑓 (𝑥) ∉ 𝐴 ⇐⇒ 𝑥 ∉ 𝑓 −1(𝐴)

⊓⊔

Example 1.27. Consider the function 𝑓 : Q→ Z defined by 𝑎
𝑏
↦→ 𝑎 · 𝑏, where

𝑔𝑐𝑑 (𝑎, 𝑏) = 1. Then, for all 𝑛 ∈ Z:

𝑓 −1({𝑛}) = {𝑛, 1
𝑛
} if 𝑛 ≠ ±1, and 𝑓 −1({±1}) = {±1}

Given two functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , the composition 𝑔 ◦ 𝑓 of 𝑔
and 𝑓 is defined as the function:

(𝑔 ◦ 𝑓 ) (𝑥) = 𝑔( 𝑓 (𝑥))

Example 1.28. The composition of the functions 𝑔(𝑥) = sin 𝑥 and 𝑓 (𝑥) = 𝑒𝑥 is
the function (𝑔 ◦ 𝑓 ) (𝑥) = sin 𝑒𝑥 depicted below.

Fig. 1.6: The graph of the function 𝑓 (𝑥) = sin 𝑒𝑥 .

Example 1.29. The function 𝑓 (𝑥) = ln
√
𝑥 is the composition of ln 𝑥 and

√
𝑥.

Similarly, the function 𝑔(𝑥) = sin 1
𝑥2 is the composition of sin 𝑥 and 1

𝑥2 . The
function ℎ(𝑥) = 𝑓 (𝑥) + 𝑥𝑔(𝑥) is depicted below.
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Fig. 1.7: The graph of the function 𝑓 (𝑥) = ln
√
𝑥 + 𝑥 sin 1

𝑥2 .

Given a function 𝑓 : 𝑋 → 𝑌 and a subset 𝐴 ⊆ 𝑋 , the restriction of 𝑓 to 𝐴,
denoted by 𝑓 |𝐴 : 𝐴 → 𝑌 , is defined by 𝑓 |𝐴(𝑥) = 𝑓 (𝑥). Similarly, if 𝑋 ⊆ 𝑍 , an
extension of 𝑓 to 𝑍 is any function 𝑔 : 𝑍 → 𝑌 such that 𝑔 |𝑋 (𝑥) = 𝑓 (𝑥).

Given functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 , the function 𝑔 is called a left
inverse of 𝑓 if

(𝑔 ◦ 𝑓 ) (𝑥) = 𝑥 for all 𝑥 ∈ 𝑋.
Similarly, the function 𝑔(𝑥) is called right-inverse of 𝑓 (𝑥) if

( 𝑓 ◦ 𝑔) (𝑥) = 𝑥 for all 𝑥 ∈ 𝑌 .

Finally, if there is a function 𝑓 −1(𝑥) such that

( 𝑓 ◦ 𝑓 −1) (𝑥) = ( 𝑓 −1 ◦ 𝑓 ) (𝑥) = 𝑥,

then 𝑓 −1(𝑥) is called the inverse of 𝑓 (𝑥). Note that any inverse, if exists, is
unique. If 𝑔(𝑥) and ℎ(𝑥) are both inverses of 𝑓 (𝑥) then

𝑔(𝑥) = 𝑔( 𝑓 (ℎ(𝑥))) = (𝑔 ◦ 𝑓 ) (ℎ(𝑥)) = ℎ(𝑥).

Theorem 1.30. A function 𝑓 : 𝑋 → 𝑌 has an inverse 𝑓 −1 : 𝑌 → 𝑋 ⇔ 𝑓 is
bĳective.

Proof. Suppose 𝑓 has an inverse 𝑓 −1, and let 𝑓 (𝑥) = 𝑓 (𝑦) for some 𝑥, 𝑦 ∈ 𝑋 .
Applying 𝑓 −1 to both sides, we get

𝑓 −1( 𝑓 (𝑥)) = 𝑓 −1( 𝑓 (𝑦)) ⇒ 𝑥 = 𝑦,

so 𝑓 is injective.
To show surjectivity, let 𝑦 ∈ 𝑌 . Since 𝑓 −1 : 𝑌 → 𝑋 is defined, set 𝑥 = 𝑓 −1(𝑦).

Then
𝑓 (𝑥) = 𝑓 ( 𝑓 −1(𝑦)) = 𝑦,

so every 𝑦 ∈ 𝑌 has a preimage in 𝑋 , and thus 𝑓 is surjective.
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Conversely, suppose 𝑓 is bĳective. For each 𝑦 ∈ 𝑌 , since 𝑓 is surjective, there
exists 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑦. Define 𝑓 −1(𝑦) = 𝑥. Because 𝑓 is also injective,
this definition is unambiguous. Then,

( 𝑓 ◦ 𝑓 −1) (𝑦) = 𝑓 ( 𝑓 −1(𝑦)) = 𝑦 and ( 𝑓 −1 ◦ 𝑓 ) (𝑥) = 𝑓 −1( 𝑓 (𝑥)) = 𝑥,

so 𝑓 −1 is indeed the inverse of 𝑓 . ⊓⊔

Example 1.31. Consider the function 𝑓 : (0, +∞) → (0, +∞) defined by
𝑓 (𝑥) = 1

𝑥
. Then 𝑓 is its own inverse; that is,

( 𝑓 ◦ 𝑓 ) (𝑥) = 𝑓 ( 𝑓 (𝑥)) = 𝑓

(
1
𝑥

)
= 𝑥.

Similarly, the function 𝑔(𝑥) = ln
(
𝑒𝑥+1
𝑒𝑥−1

)
is its own inverse. More generally, any

function whose graph is symmetric with respect to the line 𝑦 = 𝑥 is its own
inverse.

1.3 The natural numbers N

Giuseppe Peano was an Italian
mathematician. The standard ax-
iomatization of the natural numbers
is named the Peano axioms in his
honor.

The natural numbers are built axiomatically. We begin with a set N, whose
elements are called natural numbers, and a function 𝑠 : N → N, called the
successor function. For any 𝑛 ∈ N, 𝑠(𝑛) is called the successor of 𝑛.

The function 𝑠(𝑛) satisfies the following axioms, known as Peano’s axioms:

Axiom 1. The function 𝑠(𝑛) is injective; that is, every number has a unique
successor.
Axiom 2. The set N \ 𝑠(N) has exactly one element, denoted by 1; in other
words, every number has a successor, and 1 is not the successor of any
number.
Axiom 3. (Principle of induction) Let 𝑋 ⊆ N be a subset such that 1 ∈ 𝑋 ,
and whenever 𝑛 ∈ 𝑋 , it follows that 𝑠(𝑛) ∈ 𝑋 . Then 𝑋 = N.

Whenever Axiom 3 is used to prove a result, the result is said to be proved by
induction.

Theorem 1.32. For any 𝑛 ∈ N, we have 𝑠(𝑛) ≠ 𝑛.

Proof. We proceed by induction. Define the set 𝑋 ⊂ N by

𝑋 = { 𝑛 ∈ N | 𝑠(𝑛) ≠ 𝑛 }.

By Axiom 2, we have 1 ∈ 𝑋 . Now, assume 𝑛 ∈ 𝑋; that is, 𝑠(𝑛) ≠ 𝑛. Then by
Axiom 1, it follows that 𝑠(𝑠(𝑛)) ≠ 𝑠(𝑛), hence 𝑠(𝑛) ∈ 𝑋 . Therefore, by Axiom
3, we conclude that 𝑋 = N, and the result follows. ⊓⊔
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Given a function 𝑓 : 𝑋 → 𝑋 , its powers 𝑓 𝑛 are defined inductively. Specifi-
cally, set 𝑓 1 = 𝑓 , and for each 𝑛 ∈ N, define

𝑓 𝑠 (𝑛) = 𝑓 ◦ 𝑓 𝑛.

In particular, if we define 2 = 𝑠(1), 3 = 𝑠(2), and so on, then we obtain:

𝑓 2 = 𝑓 ◦ 𝑓 , 𝑓 3 = 𝑓 ◦ 𝑓 ◦ 𝑓 , . . .

Now, given two natural numbers 𝑚, 𝑛 ∈ N, their sum 𝑚 + 𝑛 ∈ N is defined by

𝑚 + 𝑛 = 𝑠𝑛 (𝑚),

where 𝑠𝑛 denotes the 𝑛-fold composition of the successor function 𝑠.
It follows that 𝑚 + 1 = 𝑠(𝑚), and more generally,

𝑚 + 𝑠(𝑛) = 𝑠(𝑚 + 𝑛).

In particular, we have the recursive identity:

𝑚 + (𝑛 + 1) = (𝑚 + 𝑛) + 1.

Lemma 1.33. For all 𝑛, 𝑞 ∈ N, we have 𝑛 + 𝑞 ≠ 𝑛.

Proof. We proceed by induction on 𝑛, for a fixed 𝑞 ∈ N. The result is true when
𝑛 = 1 by Theorem 1.32. Assume the statement holds for some 𝑛 ∈ N; that is,

𝑛 + 𝑞 ≠ 𝑛.

We must show that (𝑛 + 1) + 𝑞 ≠ 𝑛 + 1.
Note that

(𝑛 + 1) + 𝑞 = 𝑠(𝑛) + 𝑞 = 𝑠(𝑛 + 𝑞),
and by the inductive hypothesis, 𝑛 + 𝑞 ≠ 𝑛. Since the successor function 𝑠 is
injective, it follows that

𝑠(𝑛 + 𝑞) ≠ 𝑠(𝑛),
i.e.,

(𝑛 + 1) + 𝑞 ≠ 𝑛 + 1.

This completes the inductive step. Since 𝑞 ∈ Nwas arbitrary, the proof of the
lemma is complete. ⊓⊔

More generally, the addition of two natural numbers satisfies the following
properties.
Theorem 1.34. For any 𝑚, 𝑛, 𝑝 ∈ N:
1. (Associativity) 𝑚 + (𝑛 + 𝑝) = (𝑚 + 𝑛) + 𝑝;
2. (Commutativity) 𝑚 + 𝑛 = 𝑛 + 𝑚;
3. (Cancellation Law) 𝑚 + 𝑛 = 𝑚 + 𝑝 ⇒ 𝑛 = 𝑝;
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4. (Trichotomy) Only one of the following can occur: 𝑚 = 𝑛, or ∃𝑞 ∈ N such
that 𝑚 = 𝑛 + 𝑞, or ∃𝑟 ∈ N such that 𝑛 = 𝑚 + 𝑟 .

Proof. The first and second properties are straightforward. Suppose 𝑚 + 𝑛 =

𝑚 + 𝑝, then
𝑠𝑚(𝑛) = 𝑠𝑚(𝑝),

but since 𝑠 is injective, 𝑠𝑚−𝑖 (𝑛) = 𝑠𝑚−𝑖 (𝑝) for each 𝑖 = 1, 2, . . . , 𝑛 − 1. This
proves 3. To prove 4, suppose ∃𝑞 ∈ N such that 𝑚 = 𝑛 + 𝑞. Then if 𝑚 = 𝑛, we
have 𝑛+ 𝑞 = 𝑛, a contradiction by Lemma 1.33 above. Similarly, if there ∃𝑟 ∈ N
such that 𝑛 = 𝑚 + 𝑟 then 𝑚 = (𝑚 + 𝑟) + 𝑞, as before, this is a contradiction. ⊓⊔

The notion of order among natural numbers can be defined in terms of
addition. Specifically, we write

𝑚 < 𝑛

if there exists 𝑞 ∈ N such that 𝑛 = 𝑚 + 𝑞. In this case, we also write 𝑛 > 𝑚.
In particular, for every 𝑚 ∈ N,

𝑚 < 𝑠(𝑚),

since 𝑠(𝑚) = 𝑚 + 1 by definition of the successor function.
We define 𝑚 ≥ 𝑛 to mean 𝑚 > 𝑛 or 𝑚 = 𝑛, and similarly for 𝑚 ≤ 𝑛.
The following corollary is an immediate consequence of Theorem 1.34.

Corollary 1.35. For any 𝑚, 𝑛, 𝑝 ∈ N:

1. (Transitivity) 𝑚 < 𝑛, 𝑛 < 𝑝 ⇒ 𝑚 < 𝑝;
2. (Trichotomy) Only one of the following can occur: 𝑚 = 𝑛, 𝑚 < 𝑛 or 𝑚 > 𝑛.
3. 𝑚 < 𝑛⇒ 𝑚 + 𝑝 < 𝑛 + 𝑝.

The multiplication operation 𝑚 · 𝑛 is defined in a manner analogous to how
addition 𝑚 + 𝑛 was defined.

Let 𝑎𝑚 : N→ N be the "add-𝑚" function, defined by 𝑎𝑚(𝑛) = 𝑛 + 𝑚. Then,
the product of two natural numbers 𝑚 · 𝑛 is defined recursively as follows:

𝑚 · 1 := 𝑚,
𝑚 · (𝑛 + 1) := (𝑎𝑚)𝑛 (𝑚),

where (𝑎𝑚)𝑛 denotes the 𝑛-fold composition of the function 𝑎𝑚.
For example,

𝑚 · 2 = 𝑎𝑚(𝑚) = 𝑚 + 𝑚, 𝑚 · 3 = (𝑎𝑚)2(𝑚) = 𝑚 + 𝑚 + 𝑚, and so on.

It follows from this definition that multiplication satisfies the recursive rela-
tion:

𝑚 · (𝑛 + 1) = 𝑚 · 𝑛 + 𝑚.
More generally, using the same ideas as in the proof of Theorem 1.34, one

can establish the properties below. The proof is left as an exercise for the reader.
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Theorem 1.36. For any 𝑚, 𝑛, 𝑝 ∈ N:

𝑚 · (𝑛 · 𝑝) = (𝑚 · 𝑛) · 𝑝;
𝑚 · 𝑛 = 𝑛 · 𝑚;
𝑚 · 𝑛 = 𝑝 · 𝑛⇒ 𝑚 = 𝑝;
𝑚 · (𝑛 + 𝑝) := 𝑚 · 𝑛 + 𝑚 · 𝑝;
𝑚 < 𝑛⇒ 𝑚 · 𝑝 < 𝑛 · 𝑝.

1.4 Well-ordering principle

Let 𝑋 ⊆ N. A number 𝑚 ∈ 𝑋 is called the minimum element of 𝑋 , denoted

𝑚 = min 𝑋,

if 𝑚 ≤ 𝑛 for every 𝑛 ∈ 𝑋 .
The maximum element is defined analogously: 𝑚 = max 𝑋 if 𝑚 ≥ 𝑛 for all

𝑛 ∈ 𝑋 .
Note that not every subset 𝑋 ⊆ N has a maximum. In fact, N itself has no

maximum, since 𝑚 < 𝑚 + 1 for every 𝑚 ∈ N.

Example 1.37. The minimum element of the set

𝑋 = {𝑛 ∈ N | 𝑛2 + 1 > 50}

is 8, i.e., min 𝑋 = 8. However, 𝑋 does not have a maximum, since 𝑛 ∈ 𝑋 ⇒
𝑛 + 1 ∈ 𝑋 .

Lemma 1.38. If 𝑚 = min 𝑋 and 𝑛 = min 𝑋 then 𝑚 = 𝑛. A equivalent result is
true for the maximum.

Proof. Since 𝑚 ≤ 𝑝 for every 𝑝 ∈ 𝑋 , 𝑚 ≤ 𝑛 in particular. Similarly, 𝑛 ≤ 𝑚 and
hence 𝑚 = 𝑛. ⊓⊔

Although not every subset of N has a maximum, every non-empty subset
does have a minimum.

Theorem 1.39. (Well-ordering principle) Let 𝑋 ⊆ N be non-empty. Then 𝑋 has
a minimum.

Proof. If 1 ∈ 𝑋 then 1 is the minimum, so suppose 1 ∉ 𝑋 . Let

𝐼𝑛 = {𝑚 ∈ N | 1 ≤ 𝑚 ≤ 𝑛 },

and consider the set
𝐿 = { 𝑛 ∈ N | 𝐼𝑛 ⊆ 𝑋𝑐 }.

Since 1 ∉ 𝑋 ⇒ 1 ∈ 𝐿. If 𝑛 ∈ 𝐿 ⇒ 𝑛 + 1 ∈ 𝐿, the induction hypothesis would
imply 𝐿 = N, but 𝐿 ≠ N, since 𝐿 ⊆ 𝑋𝑐 = N − 𝑋 , and 𝑋 ≠ ∅. We conclude that
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there is a 𝑚0 such that 𝑚0 ∈ 𝐿 and 𝑚0 + 1 ∉ 𝐿. It follows than 𝑚0 + 1 is the
minimum element of 𝑋 . ⊓⊔

Corollary 1.40. (Strong induction) Let 𝑋 ⊆ N be a set with the following
property:

∀𝑛 ∈ N, if X contains all 𝑚 < 𝑛⇒ 𝑛 ∈ 𝑋.
Then 𝑋 = N.

Proof. Define 𝑌 = 𝑋𝑐. The result is equivalent to the statement 𝑌 = ∅. Suppose
not, that is, 𝑌 ≠ ∅. By the Well-ordering principle, 𝑌 has a minimum element,
say 𝑝 ∈ 𝑌 . It follows that 𝑝 ∈ 𝑋 , a contradiction. ⊓⊔

Example 1.41. Strong induction can be used to prove the Fundamental The-
orem of Arithmetic, which states that every natural number greater than 1 can
be written as a product of prime numbers. (A number 𝑝 is called prime if 𝑝 > 1
and whenever 𝑝 = 𝑚 · 𝑛, then either 𝑚 = 1 or 𝑛 = 1.)

Let 𝑋 = {𝑚 ∈ N | 𝑚 > 1 and 𝑚 is a product of primes}, and fix 𝑛 ∈ N with
𝑛 > 1. Suppose that 𝑋 contains all natural numbers 𝑚 such that 1 < 𝑚 < 𝑛.

If 𝑛 is prime, then 𝑛 ∈ 𝑋 . If 𝑛 is not prime, then 𝑛 = 𝑝 · 𝑞 for some 𝑝, 𝑞 < 𝑛,
and by the inductive hypothesis, both 𝑝 and 𝑞 belong to 𝑋 , so 𝑛 is a product of
primes. In either case, it follows that 𝑛 ∈ 𝑋 .

Therefore, by the principle of strong induction, we conclude that 𝑋 = {𝑛 ∈
N | 𝑛 > 1}, i.e., every natural number greater than 1 is a product of primes.

Let 𝑋 be any set. A common method for defining a function 𝑓 : N →
𝑋 is by recurrence (this is sometimes also referred to as "by induction" or
"recursively"). Specifically, one defines 𝑓 (1), and provides a rule that determines
𝑓 (𝑚) based on the values of 𝑓 (𝑛) for all 𝑛 < 𝑚.

In principle, more than one function could satisfy such conditions. However,
one can easily show that the function defined in this way is unique.

Example 1.42. (Factorial) The factorial function 𝑛 ↦→ 𝑛! can be defined recur-
sively. Define a function 𝑓 : N→ N by setting:

𝑓 (1) = 1, and 𝑓 (𝑛 + 1) = (𝑛 + 1) · 𝑓 (𝑛).

Then,
𝑓 (2) = 2 · 1, 𝑓 (3) = 3 · 2 · 1, . . . , 𝑓 (𝑛) = 𝑛!.

Example 1.43. (Arbitrary sums/products) So far, we have defined expressions
such as 𝑚 + 𝑛. What about sums involving more terms, such as 𝑚 + 𝑛 + 𝑝 or
general expressions like 𝑚1 + · · · + 𝑚𝑛? To define such arbitrary sums (and
similarly products), we use induction.

The sum of 𝑛 terms is defined recursively as:

𝑚1 + · · · + 𝑚𝑛 := (𝑚1 + · · · + 𝑚𝑛−1) + 𝑚𝑛.

Similarly, for products:
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𝑚1 · · · · · 𝑚𝑛 := (𝑚1 · · · · · 𝑚𝑛−1) · 𝑚𝑛.

1.5 Finite and Infinite Sets

Throughout this section, 𝐼𝑛 denotes the set of natural numbers less than or equal
to 𝑛:

𝐼𝑛 = {𝑚 ∈ N | 1 ≤ 𝑚 ≤ 𝑛}.
An arbitrary set 𝑋 is called finite if 𝑋 = ∅ or there exists a number 𝑛 ∈ N

and a bĳection
𝑓 : 𝐼𝑛 → 𝑋.

In the latter case, we say that 𝑋 has 𝑛 elements and write

|𝑋 | = 𝑛.

The function 𝑓 is called a counting function for 𝑋 . By convention, if 𝑋 = ∅,
then 𝑋 is said to have zero elements; that is, |∅| = 0.

It remains to show that the notion of “number of elements” is well-defined.
That is, if there exist bĳections 𝑓 : 𝐼𝑛 → 𝑋 and 𝑔 : 𝐼𝑚 → 𝑋 , then it must follow
that 𝑛 = 𝑚.

Theorem 1.44. Let 𝑋 ⊆ 𝐼𝑛. If there is a bĳection 𝑓 : 𝐼𝑛 → 𝑋 , then 𝑋 = 𝐼𝑛.

Proof. The proof is by induction on 𝑛. The case 𝑛 = 1 is obvious, suppose the
result true for 𝑛, the proof follows if one can prove the result for 𝑛 + 1.

Suppose 𝑋 ⊆ 𝐼𝑛+1 and there is a bĳection 𝑓 : 𝐼𝑛+1 → 𝑋 . Let 𝑎 = 𝑓 (𝑛 + 1)
and consider the restriction 𝑓 : 𝐼𝑛 → 𝑋 − {𝑎}.

If 𝑋 − {𝑎} ⊆ 𝐼𝑛 then 𝑋 − {𝑎} = 𝐼𝑛, 𝑎 = 𝑛 + 1 and 𝑋 = 𝐼𝑛+1.
Suppose 𝑋 − {𝑎} ⊈ 𝐼𝑛, then 𝑛 + 1 ∈ 𝑋 − {𝑎} and one can find 𝑏 such that

𝑓 (𝑏) = 𝑛 + 1. Let 𝑔 : 𝐼𝑛+1 → 𝑋 be the defined by 𝑔(𝑚) = 𝑓 (𝑚) if 𝑚 ≠ 𝑛 + 1, 𝑎;
𝑔(𝑛+1) = 𝑛+1; 𝑔(𝑏) = 𝑎. By construction, the restriction 𝑔 : 𝐼𝑛 → 𝑋 − {𝑛+1}
is a bĳection and obviously 𝑋 − {𝑛 + 1} ⊆ 𝐼𝑛, hence 𝑋 − {𝑛 + 1} = 𝐼𝑛 and it
follows that 𝑋 = 𝐼𝑛+1. ⊓⊔

Corollary 1.45. (Number of elements is well-defined) If there is a bĳection
𝑓 : 𝐼𝑛 → 𝐼𝑚 then 𝑚 = 𝑛. Therefore, if 𝑓 : 𝐼𝑛 → 𝑋 and 𝑔 : 𝐼𝑚 → 𝑋 are
bĳections then 𝑛 = 𝑚.

Proof. The first part follows directly from the theorem. For the second part,
consider the composition ( 𝑓 −1 ◦ 𝑔) : 𝐼𝑚 → 𝐼𝑛. ⊓⊔

Corollary 1.46. There is no bĳection 𝑓 : 𝑋 → 𝑌 between a finite set 𝑋 and a
proper subset 𝑌 ⊆ 𝑋 .

Proof. By definition there is a bĳection 𝜑 : 𝐼𝑛 → 𝑋 for some 𝑛 ∈ N. Since 𝑌
is proper, 𝐴 := 𝜑−1(𝑌 ) is also proper in 𝐼𝑛. Let 𝜑𝐴 : 𝐴 → 𝑌 be the restriction
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of 𝜑 from 𝐼𝑛 to 𝐴. Suppose there is a bĳection 𝑓 : 𝑋 → 𝑌 , then the composite
function 𝜑−1

𝐴
◦ 𝑓 ◦ 𝜑 : 𝐼𝑛 → 𝐴 defines a bĳection, a contradiction. ⊓⊔

Theorem 1.47. Let 𝑋 be a finite set and 𝑌 ⊆ 𝑋 , then 𝑌 is finite and |𝑌 | ≤ |𝑋 |,
the equality occurs only if 𝑋 = 𝑌 .

Proof. It’s enough to prove the result for 𝑋 = 𝐼𝑛. If 𝑛 = 1 the result is obvious.
Suppose the result is valid for 𝐼𝑛 and consider𝑌 ⊆ 𝐼𝑛+1. If𝑌 ⊆ 𝐼𝑛, the induction
hypothesis gives the result, so assume 𝑛 + 1 ∈ 𝑌 . Then 𝑌 − {𝑛 + 1} ⊆ 𝐼𝑛
and by induction, there is a bĳection 𝑓 : 𝐼𝑝 → 𝑌 − {𝑛 + 1}, where 𝑝 ≤ 𝑛. Let
𝑔 : 𝐼𝑝+1 → 𝑌 be a bĳection defined by 𝑔(𝑛) = 𝑓 (𝑛) if 𝑛 ∈ 𝐼𝑝, and 𝑔(𝑝+1) = 𝑛+1.
This proves that𝑌 is finite, moreover since 𝑝 ≤ 𝑛⇒ 𝑝 + 1 ≤ 𝑛+ 1. It follows by
induction that |𝑌 | ≤ 𝑛. The last statement says that if 𝑌 ⊆ 𝐼𝑛 and |𝑌 | = 𝑛 then
𝑌 = 𝐼𝑛, but this is a direct consequence of Theorem 1.44. ⊓⊔

The following corollaries are immediate:

Corollary 1.48. Let𝑌 be a finite set, and let 𝑓 : 𝑋 → 𝑌 be an injective function.
Then 𝑋 is also finite, and |𝑋 | ≤ |𝑌 |.

Proof. Indeed, since 𝑓 (𝑋) ⊆ 𝑌 and 𝑌 is finite, it follows that 𝑓 (𝑋), and hence
𝑋 , is finite and satisfies |𝑋 | ≤ |𝑌 |. ⊓⊔

Corollary 1.49. Let 𝑋 be a finite set, and let 𝑓 : 𝑋 → 𝑌 be a surjective function.
Then 𝑌 is also finite, and |𝑌 | ≤ |𝑋 |.

Proof. Since 𝑓 is surjective, by the proof of Theorem 1.30, 𝑓 has an injective
right-inverse 𝑔 : 𝑌 → 𝑋 . The result follows by the corollary above. ⊓⊔

A set 𝑋 that is not finite is said to be infinite. More precisely, 𝑋 is infinite if
it is nonempty and there exists no bĳection 𝑓 : 𝐼𝑛 → 𝑋 for any 𝑛 ∈ N.

Example 1.50. The set of natural numbers N is infinite since there is no surjec-
tion from 𝐼𝑛 onto N. Indeed, for any function 𝑓 : 𝐼𝑛 → N, the number

𝑓 (1) + 𝑓 (2) + · · · + 𝑓 (𝑛) + 1

is not in the range of 𝑓 .

Example 1.51. Z and Q are also infinite sets since they contain N, which is
infinite.

A set 𝑋 ⊆ N is bounded, if there is a number 𝑀 ∈ N such that 𝑛 ≤ 𝑀 for all
𝑛 ∈ 𝑋 .

Theorem 1.52. Let 𝑋 ⊆ N be nonempty. The following are equivalent:

(a) 𝑋 is finite;
(b) 𝑋 is bounded;
(c) 𝑋 has a greatest element.

Proof. The proof is based on the implications a ⇒ b, b ⇒ c, c ⇒ a.
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(a ⇒ b) Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. Then

𝑥 ≤ 𝑀 = max{𝑥1, 𝑥2, . . . , 𝑥𝑛}

for every 𝑥 ∈ 𝑋 . Hence, 𝑋 is bounded by 𝑀 .
(b ⇒ c) Consider the set

𝐴 = {𝑛 ∈ N | 𝑛 ≥ 𝑥 for all 𝑥 ∈ 𝑋}.

Since 𝑋 is bounded, 𝐴 ≠ ∅. By the well-ordering principle, 𝐴 has a minimum
element, say 𝑚 ∈ 𝐴.
If 𝑚 ∈ 𝑋 , then 𝑚 is the greatest element of 𝑋 .
Suppose instead that 𝑚 ∉ 𝑋 . Then 𝑚 > 𝑥 for all 𝑥 ∈ 𝑋 . Since 𝑋 ≠ ∅, 𝑚 > 1,
so we can write 𝑚 = 𝑝 + 1 for some 𝑝 ∈ N.
If 𝑝 ≥ 𝑥 for all 𝑥 ∈ 𝑋 , then 𝑝 ∈ 𝐴, contradicting the minimality of 𝑚 since
𝑝 < 𝑚.
Otherwise, there exists 𝑥 ∈ 𝑋 such that 𝑥 > 𝑝. But then 𝑥 ≥ 𝑚, which
contradicts 𝑚 ∉ 𝑋 unless 𝑥 = 𝑚, which is impossible by assumption.
Therefore, it follows that 𝑚 ∈ 𝑋 , and 𝑚 is the greatest element.

(c ⇒ a) If 𝑋 has a greatest element, say 𝑀 , then 𝑋 ⊆ 𝐼𝑀 , which implies 𝑋 is
finite.

⊓⊔

Theorem 1.53. Let 𝑋 and 𝑌 be two sets such that |𝑋 | = 𝑚, |𝑌 | = 𝑛, and
𝑋 ∩ 𝑌 = ∅. Then 𝑋 ∪ 𝑌 is finite and

|𝑋 ∪ 𝑌 | = 𝑚 + 𝑛.

Proof. Since |𝑋 | = 𝑚, there exists a bĳection

𝑓 : 𝐼𝑚 → 𝑋.

Similarly, since |𝑌 | = 𝑛, there exists a bĳection

𝑔 : 𝐼𝑛 → 𝑌 .

Because 𝑋 ∩ 𝑌 = ∅, the sets 𝑋 and 𝑌 are disjoint. Define

ℎ : 𝐼𝑚+𝑛 → 𝑋 ∪ 𝑌

by

ℎ(𝑘) =
{
𝑓 (𝑘), 1 ≤ 𝑘 ≤ 𝑚,
𝑔(𝑘 − 𝑚), 𝑚 + 1 ≤ 𝑘 ≤ 𝑚 + 𝑛.

We claim that ℎ is a bĳection.
Suppose ℎ(𝑘1) = ℎ(𝑘2).
- If 𝑘1, 𝑘2 ≤ 𝑚, then 𝑓 (𝑘1) = 𝑓 (𝑘2), so 𝑘1 = 𝑘2 since 𝑓 is injective.
- If 𝑘1, 𝑘2 > 𝑚, then 𝑔(𝑘1 − 𝑚) = 𝑔(𝑘2 − 𝑚), so 𝑘1 = 𝑘2 since 𝑔 is injective.
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- If one of 𝑘1, 𝑘2 is ≤ 𝑚 and the other > 𝑚, then ℎ(𝑘1) ∈ 𝑋 and ℎ(𝑘2) ∈ 𝑌 ,
contradicting 𝑋 ∩ 𝑌 = ∅.

It follows that ℎ is injective.
For any 𝑥 ∈ 𝑋 ∪ 𝑌 , either 𝑥 ∈ 𝑋 or 𝑥 ∈ 𝑌 . If 𝑥 ∈ 𝑋 , then 𝑥 = 𝑓 (𝑘) = ℎ(𝑘)

for some 𝑘 ≤ 𝑚. If 𝑥 ∈ 𝑌 , then 𝑥 = 𝑔(𝑙) = ℎ(𝑚 + 𝑙) for some 𝑙 ≤ 𝑛. Thus, ℎ is
surjective.

Therefore, ℎ is a bĳection and

|𝑋 ∪ 𝑌 | = 𝑚 + 𝑛.

⊓⊔
The corollaries below follow immediately from the preceding theorem.

Corollary 1.54. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛, be a finite collection of sets such that each
𝑋𝑖 is finite and 𝑋𝑖 ∩ 𝑋 𝑗 = ∅ if 𝑖 ≠ 𝑗 . Then

𝑛⋃
𝑖=1
𝑋𝑖 is finite and����� 𝑛⋃

𝑖=1
𝑋𝑖

����� = 𝑛∑︁
𝑖=1

|𝑋𝑖 |.

Corollary 1.55. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛, be a finite collection of sets such that each
𝑋𝑖 is finite. Then

𝑛⋃
𝑖=1
𝑋𝑖 is finite and����� 𝑛⋃

𝑖=1
𝑋𝑖

����� ≤ 𝑛∑︁
𝑖=1

|𝑋𝑖 |

.

Proof. For each 𝑖 = 1, . . . , 𝑛, set 𝑌𝑖 = 𝑋𝑖 × {𝑖}. Then the projection

𝜋𝑖 :
𝑛⋃
𝑖=1
𝑌𝑖 →

𝑛⋃
𝑖=1

𝑋𝑖

in the first coordinate is surjective, by Corollaries 1.49 and 1.54, the proof is
complete. ⊓⊔
Corollary 1.56. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛, be a finite collection of sets such that each
𝑋𝑖 is finite. Then 𝑋1 × . . . × 𝑋𝑛 is finite and

|𝑋1 × . . . × 𝑋𝑛 | =
𝑛∏
𝑖=1

|𝑋𝑖 |.

Proof. It’s suffices to prove for 𝑛 = 2, since the general case follows from this
one. Let 𝑋2 = {𝑦1, . . . , 𝑦𝑚}, notice that 𝑋1 × 𝑋2 = 𝑋1 × {𝑦1} ∪ . . .∪ 𝑋2 × {𝑦𝑚},
the result follows by Corollary 1.54. ⊓⊔



20 1 Naive Set Theory

1.6 Countable and Uncountable Sets

A set 𝑋 is countable if it is either finite or there exists a bĳection 𝑓 : N→ 𝑋 . In
the latter case, since N is infinite, 𝑋 is infinite, and we say that 𝑋 is countably
infinite.

Example 1.57. The set 𝑋 = { 2𝑛 ∈ N | 𝑛 ∈ N } of all even numbers is countable.
The function 𝑓 (𝑥) = 2𝑥 defines a bĳection between 𝑋 and N.

Theorem 1.58. Let 𝑋 be an infinite set. Then 𝑋 has a countably infinite subset.

Proof. It suffices to construct an injective function 𝑓 : N → 𝑋 , since any
injective function is a bĳection onto its image.

Choose an element 𝑎1 ∈ 𝑋 and define 𝑓 (1) = 𝑎1. Let 𝑋1 = 𝑋 \ {𝑎1}. Since
𝑋 is infinite, 𝑋1 is also infinite. Choose an element 𝑎2 ∈ 𝑋1 and set 𝑓 (2) = 𝑎2.
Proceeding inductively, define 𝑎𝑛 ∈ 𝑋𝑛−1, where

𝑋𝑛−1 = 𝑋 \ {𝑎1, 𝑎2, . . . , 𝑎𝑛−1},

and set 𝑓 (𝑛) = 𝑎𝑛 for each 𝑛 ∈ N.
To show that 𝑓 is injective, suppose 𝑓 (𝑛) = 𝑓 (𝑚). Then 𝑎𝑛 = 𝑎𝑚, which

implies 𝑛 = 𝑚, since the elements 𝑎1, 𝑎2, . . . were chosen to be distinct. Thus,
𝑓 is injective.

⊓⊔

Corollary 1.59. A set 𝑋 is infinite if and only if there is a bĳection 𝑓 : 𝑋 → 𝑌 ,
where 𝑌 ⊊ 𝑋 is a proper subset.

Proof. Suppose 𝑋 infinite, by Theorem 1.58, 𝑋 has a countably infinite subset,
say 𝑍 = {𝑎1, 𝑎2, 𝑎3, . . .}. Set𝑌 = (𝑋−𝑍) ∪{𝑎2, 𝑎4, 𝑎6, . . .} and define 𝑓 (𝑥) = 𝑥
if 𝑥 ∈ 𝑋 − 𝑍 , and 𝑓 (𝑎𝑛) = 𝑎2𝑛 otherwise. The function 𝑓 (𝑥), defined this way,
is clearly a bĳection. The converse follows from Corollary 1.46. ⊓⊔

A function 𝑓 : 𝑋 → 𝑌 is called 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 if 𝑥 < 𝑦 ⇒ 𝑓 (𝑥) < 𝑓 (𝑦).
Theorem 1.60. Every subset 𝑋 of N is countable.

Proof. The proof is very similar to the one in Theorem 1.58. If 𝑋 is finite then is
countable, so assume 𝑋 infinite. We define an increasing bĳection 𝑓 : N → 𝑋

by induction. Let 𝑋1 = 𝑋 , 𝑎1 = min 𝑋 (which exists by Theorem 1.39), and
set 𝑓 (1) = 𝑎1. Now, define 𝑋2 = 𝑋 − {𝑎1} and 𝑓 (2) = 𝑎2 = min 𝑋2. By
induction, we define 𝑓 (𝑛) = 𝑎𝑛 = min 𝑋𝑛, where 𝑋𝑛 = 𝑋 − {𝑎1, 𝑎2, . . . , 𝑎𝑛−1}.
The function 𝑓 (𝑛) is injective by construction, suppose 𝑓 (𝑛) not surjective.
There is 𝑥 ∈ 𝑋 such that 𝑥 ∉ 𝑓 (N). So 𝑥 ∈ 𝑋𝑛 for every 𝑛, which implies that
𝑥 > 𝑓 (𝑛) for every 𝑛, and 𝑥 is a bound for the infinite set 𝑓 (N), a contradiction
by Theorem 1.52. ⊓⊔

Example 1.61. Let 𝑋 be a countable set. Then by Theorem 1.60, for any𝑌 ⊆ 𝑋 ,
𝑌 is countable.
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Example 1.62. The set of all prime numbers is countable, as it is a subset of N.

Example 1.63. Let 𝑌 be a countable set and let 𝑓 : 𝑋 → 𝑌 be an injective
function. Then 𝑋 is countable. Indeed, since 𝑓 is injective, it defines a bĳection
between 𝑋 and its image 𝑓 (𝑋) ⊆ 𝑌 . As every subset of a countable set is
countable, it follows that 𝑓 (𝑋), and hence 𝑋 , is countable. Similarly, if 𝑋 be a
countable set and 𝑓 : 𝑋 → 𝑌 a surjective function. Then 𝑌 is countable.

Example 1.64. The set Z of integers is countable. Indeed, consider the function
𝑓 : Z→ N defined by

𝑓 (𝑚) =


1, if 𝑚 = 0,
2𝑚, if 𝑚 > 0,
−2𝑚 + 1, if 𝑚 < 0.

This function is bĳective, and hence Z is countable.

Example 1.65. The set N × N is countable. Indeed, the function

𝑓 (𝑚, 𝑛) = 2𝑚3𝑛

defines an injective mapping 𝑓 : N × N→ N. Since the image of 𝑓 is a subset
of N, which is countable, it follows that N × N is countable.

Corollary 1.66. Let 𝑋1, 𝑋2, . . . be a countable collection of countable sets. Set
𝑋 =

∞⋃
𝑖=1
𝑋𝑖 , then 𝑋 is countable.

Proof. Let 𝑓𝑖 : N→ 𝑋𝑖 be a counting function for each 𝑖 ∈ N. Then 𝑓 (𝑖, 𝑚) :=
𝑓𝑖 (𝑚) defines a surjection 𝑓 : N×N→ 𝑋 . By Example 1.63, 𝑋 is countable. ⊓⊔

Corollary 1.67. If 𝑋,𝑌 are countable sets then 𝑋 × 𝑌 is countable.

Proof. Let 𝑓1 : N → 𝑋, 𝑓2 : N → 𝑌 be counting functions. Then 𝑓 (𝑚, 𝑛) :=
( 𝑓1(𝑚), 𝑓2(𝑛)) defines a bĳection, Example 1.65 concludes the proof. ⊓⊔

Corollary 1.68. The set Q of rational numbers is countable.

Proof. Let Z∗ denote the set of nonzero integers. Define the surjective function
𝑓 : Z × Z∗ → Q given by 𝑓 (𝑚, 𝑛) = 𝑚

𝑛
. By Example 1.63, Q is countable. ⊓⊔

A set 𝑋 is uncountable if it is not countable. Given two sets 𝑋 and𝑌 , if there
exists a bĳection 𝑓 : 𝑋 → 𝑌 , we say that 𝑋 and 𝑌 have the same cardinality,
and write:

card(𝑋) = card(𝑌 ).
If there exists an injective function 𝑓 : 𝑋 → 𝑌 but no surjective function

𝑔 : 𝑋 → 𝑌 , then we write

card(𝑋) < card(𝑌 ).
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The cardinality of the set of natural numbers N is denoted by

card(N) = ℵ0.

If a set 𝑋 is finite with exactly 𝑛 elements, we write card(𝑋) = 𝑛. By definition,
for any infinite set 𝑋 , we have:

ℵ0 ≤ card(𝑋).

Recall that given two sets 𝑋 and 𝑌 , the set F (𝑋,𝑌 ) denotes the set of all
functions from 𝑋 to 𝑌 .
Theorem 1.69. (Cantor) Let 𝑋 and 𝑌 be sets, with 𝑌 containing at least two
elements. Then there is no surjective function 𝜑 : 𝑋 → F (𝑋,𝑌 ).
Proof. Suppose a function 𝜙 : 𝑋 → F (𝑋,𝑌 ) is given and let 𝜙𝑥 = 𝜙(𝑥) : 𝑋 →
𝑌 be the image of 𝑥 ∈ 𝑋 , which itself is a function. We claim that there is a
𝑓 : 𝑋 → 𝑌 that is not 𝜙𝑥 for any 𝑋 . Indeed, for each 𝑥 ∈ 𝑋 let 𝑓 (𝑥) be an
element different than 𝜙𝑥 (𝑥) (this is possible sice |𝑌 | ≥ 2), then 𝑓 ≠ 𝜙𝑥 for
every 𝑥 ∈ 𝑋 and hence, 𝜙 is not surjective. ⊓⊔
Corollary 1.70. Given any set 𝑋 , we have

card(𝑋) < card(P(𝑋)).

In particular,
ℵ0 < card(P(N)).

Proof. Let 𝑌 = {0, 1}. Then F (𝑋,𝑌 ) is in bĳection with P(𝑋), since each
function 𝑓 : 𝑋 → {0, 1} corresponds to the subset 𝐴 = 𝑓 −1(1) ⊆ 𝑋 . By
Cantor’s Theorem (Theorem 1.69), there is no surjective function 𝜑 : 𝑋 →
F (𝑋,𝑌 ). It follows that

card(𝑋) < card(F (𝑋,𝑌 )) = card(P(𝑋)).

The inequality ℵ0 < card(P(N)) is a particular case. ⊓⊔
Corollary 1.71. Let 𝑋1, 𝑋2, . . . be a countable collection of countably infinite
sets. Then the infinite cartesian product 𝑋 =

∞∏
𝑖=1
𝑋𝑖 is uncountable.

Proof. It’s enough to prove the result for 𝑋𝑖 = N. In this case, 𝑋 = F (N,N) and
the result follows from Theorem 1.69. ⊓⊔
Example 1.72. The set 𝑋 = F (N,N) = {𝑎𝑛 ; 𝑎𝑛 ∈ N} is the set of all sequences
of natural numbers. By the corollary above, this set is uncountable. Similarly,
the power set of the natural numbers P(N) is uncountable.
Example 1.73. Any non degenerate interval (𝑎, 𝑏) is uncountable. More gen-
erally, the set of all real numbers R is uncountable. This will be proved in the
next sections.
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Exercises

1. Let 𝐴, 𝐵, 𝑋 be sets with the following properties:

𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑋

For any set 𝑌 if 𝐴 ⊆ 𝑌 and 𝐵 ⊆ 𝑌 then 𝑋 ⊆ 𝑌 .

Show that 𝑋 = 𝐴 ∪ 𝐵.
2. Given 𝐴, 𝐵 ⊆ 𝐸 , show that 𝐴 ⊆ 𝐵 if and only if 𝐴 ∩ 𝐵𝑐 = ∅.
3. Give examples of sets 𝐴, 𝐵, 𝐶 such that (𝐴 ∪ 𝐵) ∩ 𝐶 ≠ 𝐴 ∪ (𝐵 ∩ 𝐶).
4. Show that 𝐴 = 𝐵 if and only if (𝐴 ∩ 𝐵𝑐) ∪ (𝐴𝑐 ∩ 𝐵) = ∅.
5. Given two sets 𝐴, 𝐵 we define the symmetric difference 𝐴Δ𝐵 by

𝐴Δ𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴).

Prove that if 𝐴Δ𝐵 = 𝐴Δ𝐶, then 𝐵 = 𝐶.
6. Show that (𝐴 ∪ 𝐵) × 𝐶 = (𝐴 × 𝐶) ∪ (𝐵 × 𝐶).
7. Show that a function 𝑓 : 𝐴 → 𝐵 is injective if and only if 𝑓 (𝐴 − 𝑋) =

𝑓 (𝐴) − 𝑓 (𝑋) for every 𝑋 ⊆ 𝐴.
8. Let 𝑓 : 𝐴→ 𝐵 be given. Show that

a. For every 𝑍 ⊆ 𝐵, we have 𝑓 ( 𝑓 −1(𝑍)) ⊆ 𝑍 .
b. 𝑓 (𝑥) is surjective if and only if 𝑓 ( 𝑓 −1(𝑍)) = 𝑍 for every 𝑍 ⊆ 𝐵.

9. Given a family of sets (𝐴𝜆)𝜆∈𝐿 , let 𝑋 be a set with the following properties:

1. For every 𝜆 ∈ 𝐿, we have 𝐴𝜆 ⊆ 𝑋 .
2. If 𝐴𝜆 ⊆ 𝑌 for every 𝜆 ∈ 𝐿, then 𝑋 ⊆ 𝑌 .

Show that 𝑋 =
⋃
𝜆∈𝐿

𝐴𝜆.

10. Let 𝑓 : P(𝐴) → P(𝐴) be a function such that if 𝑋 ⊆ 𝑌 then 𝑓 (𝑌 ) ⊆ 𝑓 (𝑋)
and 𝑓 ( 𝑓 (𝑋)) = 𝑋 . Show that 𝑓 ( ⋃

𝜆∈𝐿
𝑋𝜆) =

⋂
𝑓 (𝑋𝜆) and 𝑓 ( ⋂

𝜆∈𝐿
𝑋𝜆) =⋃

𝑓 (𝑋𝜆). [Here 𝑋,𝑌, 𝑋𝜆 are subsets of 𝐴]
11. Let F (𝑋;𝑌 ) denote the set of all functions with domain 𝑋 and codomain

𝑌 . Given the sets 𝐴, 𝐵, 𝐶, show that there is a bĳection

F (𝐴 × 𝐵;𝐶) → F (𝐴; F (𝐵;𝐶)).

12. Given two natural numbers 𝑎, 𝑏 ∈ N, prove that there is a natural number
𝑚 ∈ N such that 𝑚 · 𝑎 > 𝑏.

13. Let 𝑎 ∈ N. If the set 𝑋 has the following property: 𝑎 ∈ 𝑋 and 𝑛 ∈ 𝑋 ⇒
𝑛 + 1 ∈ 𝑋 . Then 𝑋 contains all natural numbers greater than or equal to 𝑎.

14. A number 𝑎 ∈ N is called predecessor of 𝑏 ∈ N if 𝑎 < 𝑏 and there is
no 𝑐 ∈ N such that 𝑎 < 𝑐 < 𝑏. Prove that every number, except 1, has a
predecessor.

15. Show the following using induction:

a. 2(1 + 2 + . . . + 𝑛) = 𝑛(𝑛 + 1);
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b. 1 + 3 + 5 + . . . + (2𝑛 + 1) = (𝑛 + 1)2;
c. 𝑛 ≥ 4 ⇒ 𝑛! > 2𝑛.

16. Using strong induction show that the decomposition of any number in prime
factors is unique.

17. Let 𝑋 be a finite set with 𝑛 elements. Use induction to show that the set of
all functions 𝑓 : 𝑋 → 𝑋 has exactly 𝑛! elements.

18. Let 𝑋 be a finite set. Show that a function 𝑓 : 𝑋 → 𝑋 is injective ⇐⇒ is
surjective.

19. Give an example of a surjective function 𝑓 : N→ N such that for all 𝑛 ∈ N,
the set 𝑓 −1(𝑛) is infinite.

20. Show that the power set P(𝐴) of a set 𝐴 with 𝑛 elements has 2𝑛 elements.
21. Show that if 𝐴 is countably infinite then P(𝐴) is uncountable.
22. Let 𝑓 : 𝑋 → 𝑋 be injective but not surjective. If 𝑥 ∈ 𝑋 − 𝑓 (𝑋), show that

𝑥, 𝑓 (𝑥), 𝑓 ( 𝑓 (𝑥)), . . . are pairwise distinct.
23. Let 𝑋 be an infinite set e𝑌 a finite set. Show that there is a surjective function

𝑓 : 𝑋 → 𝑌 and an injective function 𝑔 : 𝑌 → 𝑋 .
24. Find subsets 𝑋𝑖 ⊆ N and a decomposition

N = 𝑋1 ∪ 𝑋2 ∪ . . . ∪ 𝑋𝑖 ∪ . . . ,

such that 𝑋𝑖 are infinite sets and pairwise disjoints.
25. Let 𝑋 ⊆ N be infinite. Show that there is a unique increasing bĳection

𝑓 : N→ 𝑋 .
26. A sequence of natural numbers {𝑎1, 𝑎2, 𝑎3, . . .} is called increasing if 𝑎𝑖 <

𝑎𝑖+1. Show that the set of all increasing sequences of natural numbers is
uncountable.

27. (Cantor-Bernstein-Schroder theorem) Given sets 𝐴 and 𝐵, let 𝑓 : 𝐴→ 𝐵 and
𝑔 : 𝐵 → 𝐴 be injective functions. Show that there is a bĳection ℎ : 𝐴→ 𝐵.

28. Given a sequence of sets 𝐴1, 𝐴2, 𝐴3, . . ., we define the limit superior as the
set

lim sup 𝐴𝑛 =

∞⋂
𝑛=1

( ∞⋃
𝑖=𝑛

𝐴𝑖

)
.

Similarly, the limit inferior is the set

lim inf 𝐴𝑛 =

∞⋃
𝑛=1

( ∞⋂
𝑖=𝑛

𝐴𝑖

)
.

a. Show that lim sup 𝐴𝑛 is the set of elements that belong to 𝐴𝑖 for infinitely
many values of 𝑖. Similarly, show that lim inf 𝐴𝑛 is the set of elements
that belong to 𝐴𝑖 for every value of 𝑖, except possibly, for a finite number
of values of 𝑖.

b. Conclude that lim inf 𝐴𝑛 ⊆ lim sup 𝐴𝑛.
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c. Show that if 𝐴𝑛 ⊆ 𝐴𝑛+1 for every 𝑛 then lim inf 𝐴𝑛 = lim sup 𝐴𝑛 =
∞⋃
𝑛=1

𝐴𝑛.

d. Show that if 𝐴𝑛+1 ⊆ 𝐴𝑛 for every 𝑛 then lim inf 𝐴𝑛 = lim sup 𝐴𝑛 =
∞⋂
𝑛=1

𝐴𝑛.

e. Give an example of sequence such that lim inf 𝐴𝑛 ≠ lim sup 𝐴𝑛.





Chapter 2
The real numbers R

This chapter introduces one of the most fundamental algebraic structures in
analysis: the field of real numbers. We begin by presenting the definition of
a field through a precise set of axioms governing addition and multiplication.
These axioms encapsulate, in a formal way, the essential algebraic properties
that we are familiar with.

We then introduce ordered fields, which not only support algebraic opera-
tions but also possess a notion of order. This ordering allows for a meaningful
comparison between elements and enables the study of limits, inequalities, and
convergence.

The chapter continues by exploring intervals, absolute value, and foundational
ideas like bounds, supremum, and infimum within ordered fields. This leads
naturally to the central concept of completeness, which distinguishes the real
numbers R from all other ordered fields.

The final sections delve into the density and uncountability of the real num-
bers, showing that between any two real numbers there lie infinitely many
rationals—and infinitely many irrationals. These results not only underscore the
richness of the real line but also hint at the profound structure underlying the
continuum.

2.1 Fields

A field 𝐾 is a set 𝐾 together with two operations, called addition and multipli-
cation,

+ :𝐾 × 𝐾 → 𝐾

(𝑥, 𝑦) ↦→ 𝑥 + 𝑦 and
· :𝐾 × 𝐾 → 𝐾

(𝑥, 𝑦) ↦→ 𝑥 · 𝑦

satisfying the following properties (also called field axioms):

27
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Axioms of addition
For all 𝑥, 𝑦, 𝑧 ∈ 𝐾:

❑ 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 (associativity);
❑ 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity);
❑ There exists an element 0 ∈ 𝐾 such that 𝑥 + 0 = 𝑥 (identity element);
❑ For each 𝑥 ∈ 𝐾 , there exists 𝑦 ∈ 𝐾 such that 𝑥 + 𝑦 = 0. We define −𝑥 := 𝑦,

and write 𝑧 − 𝑥 in place of 𝑧 + (−𝑥) (inverse element);

Axioms of Multiplication
For all 𝑥, 𝑦, 𝑧 ∈ 𝐾:

❑ (𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧) (associativity);
❑ 𝑥 · 𝑦 = 𝑦 · 𝑥 (commutativity);
❑ There exists an element 1 ∈ 𝐾 , with 1 ≠ 0, such that 𝑥 · 1 = 𝑥 (identity

element);
❑ For each 𝑥 ∈ 𝐾 with 𝑥 ≠ 0, there exists 𝑦 ∈ 𝐾 such that 𝑥 · 𝑦 = 1. We define
𝑥−1 := 𝑦, and write 𝑧

𝑥
in place of 𝑧 · 𝑥−1 (inverse element);

❑ 𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧 (distributivity).

Example 2.1. The set of rational numbers Q, equipped with the operations

𝑎

𝑏
+ 𝑐
𝑑

:=
𝑎𝑑 + 𝑏𝑐
𝑏𝑑

and
𝑎

𝑏
· 𝑐
𝑑

:=
𝑎𝑐

𝑏𝑑
,

forms a field.
In this field:

• The additive identity is 0 := 0
1 ;

• The multiplicative identity is 1 := 1
1 ;

• The multiplicative inverse of a nonzero element 𝑎
𝑏

is given by(𝑎
𝑏

)−1
:=
𝑏

𝑎
, for 𝑎 ≠ 0.

Example 2.2. Let 𝑝 be a prime number. The set of integers modulo 𝑝, denoted

Z𝑝 := {0̄, 1̄, . . . , 𝑝 − 1},

equipped with the operations

𝑎̄ + 𝑏̄ := 𝑎 + 𝑏, and 𝑎̄ · 𝑏̄ := 𝑎 · 𝑏,

forms a field.
In this field:

• The additive identity is 0 := 0̄;
• The multiplicative identity is 1 := 1̄.
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Moreover, for any 𝑎̄ ∈ Z𝑝 with 𝑎̄ ≠ 0̄, Fermat’s Little Theorem implies

𝑎̄𝑝−1 = 1̄,

so multiplying both sides by 𝑎̄−1 yields

𝑎̄𝑝−2 = 𝑎̄−1.

Thus, the multiplicative inverse of any nonzero element 𝑎̄ ∈ Z𝑝 is given by

𝑎̄−1 = 𝑎̄𝑝−2.

Example 2.3. The set of rational functions

Q(𝑡) :=
{
𝑝(𝑡)
𝑞(𝑡)

���� 𝑝(𝑡), 𝑞(𝑡) ∈ Q[𝑡], 𝑞(𝑡) . 0
}
,

where Q[𝑡] denotes the ring of polynomials with rational coefficients, forms a
field under the usual operations:

𝑝(𝑡)
𝑞(𝑡) +

𝑟 (𝑡)
𝑠(𝑡) :=

𝑝(𝑡)𝑠(𝑡) + 𝑞(𝑡)𝑟 (𝑡)
𝑞(𝑡)𝑠(𝑡) ,

𝑝(𝑡)
𝑞(𝑡) · 𝑟 (𝑡)

𝑠(𝑡) :=
𝑝(𝑡)𝑟 (𝑡)
𝑞(𝑡)𝑠(𝑡) .

Theorem 2.4. (Properties of fields) Let 𝐾 be a field and let 𝑥, 𝑦, 𝑧 ∈ 𝐾 . Then:

❑ 𝑥 · 0 = 0;
❑ If 𝑥 · 𝑧 = 𝑦 · 𝑧 and 𝑧 ≠ 0, then 𝑥 = 𝑦;
❑ If 𝑥 · 𝑦 = 0, then 𝑥 = 0 or 𝑦 = 0;
❑ If 𝑥2 = 𝑦2, then 𝑥 = 𝑦 or 𝑥 = −𝑦.

Proof. Given 𝑥 ∈ 𝐾 ,
𝑥 · 0 + 𝑥 = 𝑥 · (0 + 1) = 𝑥,

thus, 𝑥 · 0 = 0.
Similarly, if 𝑧 ≠ 0:

𝑥 = 𝑥 · 𝑧 · 𝑧−1 = 𝑦 · 𝑧 · 𝑧−1 = 𝑦.

Next, suppose 𝑥 · 𝑦 = 0 but 𝑥 ≠ 0, then

𝑥 · 0 = 0 = 𝑥 · 𝑦,

the item above implies 𝑦 = 0. By symmetry, the result also holds when 𝑦 ≠ 0.
Lastly,

𝑥2 = 𝑦2 ⇒ 𝑥2 − 𝑦2 = 0 ⇒ (𝑥 − 𝑦) (𝑥 + 𝑦) = 0,

and it follows that 𝑥 = 𝑦 or 𝑥 = −𝑦. ⊓⊔
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2.2 Ordered Fields

An ordered field is a field 𝐾 together with a subset 𝑃 ⊆ 𝐾 , called the set of
positive elements, such that the following properties hold for all 𝑥, 𝑦 ∈ 𝑃:

❑ 𝑥 + 𝑦 ∈ 𝑃 and 𝑥 · 𝑦 ∈ 𝑃;
❑ For every 𝑥 ∈ 𝐾 , exactly one of the following holds:

𝑥 = 0, 𝑥 ∈ 𝑃, or − 𝑥 ∈ 𝑃.

If we denote −𝑃 := { −𝑝 | 𝑝 ∈ 𝑃}, then the field 𝐾 can be written as the
disjoint union

𝐾 = 𝑃 ∪ (−𝑃) ∪ {0}.
Notice that in an ordered field, if 𝑥 ≠ 0, then 𝑥2 ∈ 𝑃. In particular, this implies

1 ∈ 𝑃.

Example 2.5. The field of rational numbers Q together with the set

𝑃 =

{ 𝑎
𝑏
∈ Q ; 𝑎 · 𝑏 ∈ N

}
is an ordered field.

Example 2.6. The field Z𝑝 can’t be ordered, since if we add 1̄, p times, the
result is 0̄, i.e. 1̄ + · + 1̄ = 0̄, but in an ordered field the sum of positive elements
has to be positive, in particular nonzero.

Example 2.7. The field Q(𝑡) of Example 2.3 together with the set

𝑃 =

{
𝑝(𝑡)
𝑞(𝑡) ; the leading coefficient of 𝑝(𝑡) · 𝑞(𝑡) is positive

}
is an ordered field.

In an ordered field 𝐾 , if 𝑥 − 𝑦 ∈ 𝑃, we write 𝑥 > 𝑦 (or equivalently, 𝑦 < 𝑥).
In particular, 𝑥 > 0 implies 𝑥 ∈ 𝑃, and 𝑥 < 0 implies 𝑥 ∈ −𝑃.

Notice that if 𝑥 ∈ 𝑃 and 𝑦 ∈ −𝑃, then 𝑥 > 𝑦.
The notation 𝑥 ≤ 𝑦 is used to indicate that 𝑥 < 𝑦 or 𝑥 = 𝑦; similarly, 𝑥 ≥ 𝑦

means 𝑥 > 𝑦 or 𝑥 = 𝑦.

Theorem 2.8. Let 𝐾 be an ordered field and let 𝑥, 𝑦, 𝑧 ∈ 𝐾 . Then:

❑ If 𝑥 < 𝑦 and 𝑦 < 𝑧, then 𝑥 < 𝑧;
❑ If 𝑥 < 𝑦, then 𝑥 + 𝑧 < 𝑦 + 𝑧;
❑ Exactly one of the following holds: 𝑥 = 𝑦, 𝑥 < 𝑦, or 𝑥 > 𝑦;
❑ If 𝑧 > 0, then 𝑥 < 𝑦 ⇒ 𝑥 · 𝑧 < 𝑦 · 𝑧; if 𝑧 < 0, then 𝑥 < 𝑦 ⇒ 𝑥 · 𝑧 > 𝑦 · 𝑧.

Proof. The first two properties follow immediately from the definition of an
ordered field. We now prove the last two.
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Assume 𝑥 ≠ 𝑦. Then 𝑥 − 𝑦 ≠ 0, and by trichotomy, either 𝑥 − 𝑦 ∈ 𝑃 or
𝑦 − 𝑥 ∈ 𝑃. Thus, exactly one of the relations 𝑥 = 𝑦, 𝑥 < 𝑦, or 𝑥 > 𝑦 holds.

Now suppose 𝑧 > 0 and 𝑥 < 𝑦, so that 𝑦 − 𝑥 ∈ 𝑃. Then

𝑦 · 𝑧 − 𝑥 · 𝑧 = (𝑦 − 𝑥) · 𝑧 ∈ 𝑃,

since 𝑃 is closed under multiplication. Hence, 𝑥 · 𝑧 < 𝑦 · 𝑧.
If 𝑧 < 0, the result follows similarly, using the fact that −𝑧 ∈ 𝑃. ⊓⊔

Given two fields 𝐾 and 𝐿, a function 𝑓 : 𝐾 → 𝐿 is a homomorphism, if
∀𝑥, 𝑦 ∈ 𝐾 , the following conditions hold:

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦)
𝑓 (𝑥 · 𝑦) = 𝑓 (𝑥) · 𝑓 (𝑦)

We say 𝑓 is an isomorphism if, in addition, 𝑓 is bĳective and 𝑓 −1 is also a
homomorphism. An automorphism 𝑓 : 𝐾 → 𝐾 is an isomorphism between 𝐾
and itself.
Example 2.9. For any field 𝐾 , the isomorphism 𝑖 : 𝐾 → 𝐾 given by 𝑖(𝑥) = 𝑥
is an automorphism, often called the trivial automorphism.
Example 2.10. Let 𝐾 = Z𝑝 for some prime 𝑝. Then the function 𝑥 ↦→ 𝑥𝑝 is
an automorphism of Z𝑝, called the Frobenius automorphism. The Frobenius
automorphism plays an important role in commutative algebra and number
theory, particularly in the study of fields of characteristic 𝑝 and Galois theory.

Since in an ordered field 𝐾 , the element 1 is always positive, we have 1 + 1 >
1 > 0 and 1 + 1 + 1 > 1 + 1. Thus, we can define an increasing injection

𝑓 : N→ 𝐾

by 𝑓 (𝑛) =

𝑛 times︷           ︸︸           ︷
1 + 1 + · · · + 1, or more precisely, 𝑓 (1) = 1 and 𝑓 (𝑛 + 1) = 𝑓 (𝑛) + 1.

Therefore, it makes sense to identify N with 𝑓 (N) ⊆ 𝐾 , and henceforth we will
simply write

N ⊆ 𝐾
whenever 𝐾 is an ordered field.

Notice in particular that 𝑓 (𝑛) ≠ 0 for any 𝑛 ∈ N, so every ordered field
is infinite. More generally, whenever 𝑓 (𝑛) ≠ 0 for all 𝑛, we say that 𝐾 has
characteristic zero. Hence, every ordered field has characteristic zero.

If we drop the assumption that the field 𝐾 is ordered and there exists a number
𝑝 such that 𝑓 (𝑝) = 0, then we say that 𝐾 has characteristic 𝑝.
Example 2.11. The field Q clearly has characteristic zero. On the other hand,
the field Z𝑝 has characteristic 𝑝. More generally, if a field 𝐾 has characteristic
𝑝 ≠ 0, then 𝑝 must be a prime number.

Indeed, suppose 𝑝 is the minimal positive integer such that
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1 + 1 + · · · + 1︸           ︷︷           ︸
𝑝 times

= 0,

but 𝑝 is not prime. Then we can write 𝑝 = 𝑎𝑏 for some integers 𝑎, 𝑏 > 1.
Consider

0 = 1 + 1 + · · · + 1︸           ︷︷           ︸
𝑎𝑏 times

=
©­­«1 + 1 + · · · + 1︸           ︷︷           ︸

𝑎 times

ª®®¬ ·
©­­«1 + 1 + · · · + 1︸           ︷︷           ︸

𝑏 times

ª®®¬ .
Since 𝐾 is a field and has no zero divisors, it follows that one of the two factors
must be zero. Thus, either

1 + 1 + · · · + 1︸           ︷︷           ︸
𝑎 times

= 0 or 1 + 1 + · · · + 1︸           ︷︷           ︸
𝑏 times

= 0,

contradicting the minimality of 𝑝. Therefore, 𝑝 must be prime.
We may extend the injection described above to a function 𝑓 : Z → 𝐾 ,

allowing us to view Z ⊆ 𝐾 as well. Hence, we have

N ⊆ Z ⊆ 𝐾.

Finally, we can use the map 𝑓 : Z→ 𝐾 to define an injection 𝑔 : Q→ 𝐾 by

𝑔

(𝑎
𝑏

)
:= 𝑓 (𝑎) · 𝑓 (𝑏)−1,

where 𝑎 ∈ Z, 𝑏 ∈ N, and 𝑏 ≠ 0. In this way, we may identify Q with 𝑔(Q) ⊆ 𝐾 ,
and write

N ⊆ Z ⊆ Q ⊆ 𝐾
whenever 𝐾 is an ordered field.

Notice that if 𝐾 = Q in the above discussion, then 𝑔 : Q → Q is the trivial
automorphism. i.e.,

𝑔

(𝑎
𝑏

)
=
𝑎

𝑏
.

Theorem 2.12. (Bernoulli’s inequality) Let 𝐾 be an ordered field and 𝑥 ∈ 𝐾 . If
𝑥 ≥ −1 and 𝑛 ∈ N, then

(1 + 𝑥)𝑛 ≥ 1 + 𝑛 · 𝑥

Proof. We use induction on 𝑛 ∈ N. The case 𝑛 = 1 is clear, suppose the result
valid for 𝑛. Then (1+𝑥)𝑛+1 = (1+𝑥)𝑛 (1+𝑥) ≥ (1+𝑛 ·𝑥) (1+𝑥) = 1+𝑥+𝑛 ·𝑥+𝑥2 ≥
1 + 𝑥 + 𝑛 · 𝑥, as expected. (Notice that we used the fact that 𝑥 ≥ −1 in the first
inequality and Theorem 2.8.) ⊓⊔

Let 𝐾 be an ordered field and 𝑎 < 𝑏 be elements of 𝐾 . Any subset of the
following form is called an interval:
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❑ [𝑎, 𝑏] = {𝑥 ∈ 𝐾 ; 𝑎 ≤ 𝑥 ≤ 𝑏} (closed interval)
❑ (𝑎, 𝑏) = {𝑥 ∈ 𝐾 ; 𝑎 < 𝑥 < 𝑏} (open interval)
❑ [𝑎, 𝑏) = {𝑥 ∈ 𝐾 ; 𝑎 ≤ 𝑥 < 𝑏} and (𝑎, 𝑏] = {𝑥 ∈ 𝐾 ; 𝑎 < 𝑥 ≤ 𝑏}
❑ (−∞, 𝑏) = {𝑥 ∈ 𝐾 ; 𝑥 < 𝑏} and (−∞, 𝑏] = {𝑥 ∈ 𝐾 ; 𝑥 ≤ 𝑏}
❑ (𝑎,∞) = {𝑥 ∈ 𝐾 ; 𝑎 < 𝑥} and [𝑎,∞) = {𝑥 ∈ 𝐾 ; 𝑎 ≤ 𝑥}
❑ (−∞,∞) = 𝐾

When 𝑎 = 𝑏, we define [𝑎, 𝑎] = {𝑎} (degenerate interval) and (𝑎, 𝑎) = ∅.
Let 𝐾 be an ordered field and 𝑥 ∈ 𝐾 . The absolute value of 𝑥, denoted by |𝑥 |,

is defined by
|𝑥 | := max{𝑥,−𝑥},

that is, |𝑥 | is the greater of the two elements 𝑥 and −𝑥.
The following Theorem is an immediate consequence of the preceding defi-

nitions. The proof is left as an exercise to the reader.

Theorem 2.13. Let 𝑥, 𝑦 be elements of an ordered field 𝐾 . The following state-
ments are equivalent:

(1) −𝑦 ≤ 𝑥 ≤ 𝑦

(2) 𝑥 ≤ 𝑦 and −𝑥 ≤ 𝑦

(3) |𝑥 | ≤ 𝑦

Corollary 2.14. Let 𝑥, 𝑎, 𝜀 ∈ 𝐾 , where 𝐾 is an ordered field. Then

|𝑥 − 𝑎 | ≤ 𝜀 ⇔ 𝑎 − 𝜀 ≤ 𝑥 ≤ 𝑎 + 𝜀.

Proof. Suppose |𝑥 − 𝑎 | ≤ 𝜀. By definition of absolute value, this means

−𝜀 ≤ 𝑥 − 𝑎 ≤ 𝜀.

Adding 𝑎 to each part of the inequality yields

𝑎 − 𝜀 ≤ 𝑥 ≤ 𝑎 + 𝜀.

Conversely, suppose 𝑎 − 𝜀 ≤ 𝑥 ≤ 𝑎 + 𝜀. Subtracting 𝑎 throughout gives

−𝜀 ≤ 𝑥 − 𝑎 ≤ 𝜀,

which implies |𝑥 − 𝑎 | ≤ 𝜀, as desired. ⊓⊔

Remark.
The Theorem and corollary remains valid if we exchange ≤ by <.

Theorem 2.15. Let 𝑥, 𝑦, 𝑧 be elements of an ordered field 𝐾 . Then

(1) |𝑥 + 𝑦 | ≤ |𝑥 | + |𝑦 |;
(2) |𝑥 · 𝑦 | = |𝑥 | · |𝑦 |;
(3) |𝑥 | − |𝑦 | ≤ | |𝑥 | − |𝑦 | | ≤ |𝑥 − 𝑦 |;
(4) |𝑥 − 𝑧 | ≤ |𝑥 − 𝑦 | + |𝑦 − 𝑧 |.
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Proof. (1) If 𝑥 and 𝑦 have the same sign or one of them is zero then we
obviously have |𝑥 + 𝑦 | = |𝑥 | + |𝑦 |. Otherwise, suppose they have opposite
sign and |𝑥 | > |𝑦 |. Then |𝑥 + 𝑦 | = |𝑥 | − |𝑦 | ≤ |𝑥 | + |𝑦 |. If instead |𝑥 | < |𝑦 |,
we may reverse the roles of 𝑥 and 𝑦 and apply the same argument to obtain
the same inequality.

(2) The result is clear if 𝑥 and 𝑦 have the same sign or one of them is zero.
Suppose they have opposite sign, say 𝑥 > 0 and 𝑦 < 0. Then

|𝑥 · 𝑦 | = −𝑥 · 𝑦 = 𝑥 · −𝑦 = |𝑥 | · |𝑦 |

(3) The first inequality is clear, we prove the second one. Apply (1) with 𝑥 − 𝑦
and 𝑦 to obtain

|𝑥 | ≤ |𝑥 − 𝑦 | + |𝑦 | ⇒ |𝑥 | − |𝑦 | ≤ |𝑥 − 𝑦 |.

Similarly, |𝑦 | − |𝑥 | ≤ |𝑥 − 𝑦 | and the conclusion follows.
(4) Apply (1) with 𝑥 − 𝑧 and 𝑧 − 𝑦 instead of 𝑥 and 𝑦.

⊓⊔

Let 𝐾 be an ordered field and let 𝑋 ⊆ 𝐾 . An element 𝑀 ∈ 𝐾 is called an
upper bound of 𝑋 if 𝑥 ≤ 𝑀 for every 𝑥 ∈ 𝑋 . Similarly, an element 𝑚 ∈ 𝐾 is
called a lower bound of 𝑋 if 𝑚 ≤ 𝑥 for every 𝑥 ∈ 𝑋 .

We say that 𝑋 is bounded from above if it has an upper bound, bounded from
below if it has a lower bound, and simply bounded if it has both an upper and a
lower bound, that is, if 𝑋 ⊆ [𝑚, 𝑀] for some 𝑚, 𝑀 ∈ 𝐾 .

Example 2.16. The well-ordering principle guarantees that N is bounded from
below when viewed as a subset of the ordered field Q. On the other hand, N is
clearly not bounded from above in Q, since for any 𝑛 ∈ N, we have 𝑛 + 1 > 𝑛.

Example 2.17. Oddly enough, the set N is bounded from above in the ordered
fieldQ(𝑡) introduced in Example 2.7. Indeed, for any 𝑛 ∈ N, the rational function
𝑟 (𝑡) = 𝑡 satisfies 𝑟 (𝑡) − 𝑛 > 0. Hence, 𝑟 (𝑡) ∈ Q(𝑡) serves as an upper bound for
N, implying that N is bounded from above, and consequently bounded, in Q(𝑡).
Theorem 2.18. Let 𝐾 be an ordered field. The following statements are equiv-
alent:

1. N is not bounded from above in 𝐾;
2. For any 𝑎, 𝑏 ∈ 𝐾 with 𝑎 > 0, there exists 𝑛 ∈ N such that 𝑛 · 𝑎 > 𝑏;
3. For any 𝑎 > 0 in 𝐾 , there exists 𝑛 ∈ N such that 0 < 1

𝑛
< 𝑎.

A field 𝐾 satisfying the above conditions is called Archimedean field.

Proof. The proof is based on the implications 1 ⇒ 2, 2 ⇒ 3, and 3 ⇒ 1.

(1 ⇒ 2) SinceN is unbounded from above in 𝐾 , for given 𝑎, 𝑏 ∈ 𝐾 with 𝑎 > 0, there
exists 𝑛 ∈ N such that

𝑏

𝑎
< 𝑛,
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hence multiplying both sides by 𝑎 gives

𝑛 · 𝑎 > 𝑏.

(2 ⇒ 3) Taking 𝑏 = 1 in statement 2, we obtain that for any 𝑎 > 0, there exists 𝑛 ∈ N
such that

𝑛 · 𝑎 > 1,

which is equivalent to
1
𝑛
< 𝑎,

and since 𝑛 ∈ N, 1/𝑛 > 0, so

0 <
1
𝑛
< 𝑎.

(3 ⇒ 1) Given any 𝑎 > 0, consider 1
𝑎
. By statement 3, there exists 𝑛 ∈ N such that

1
𝑛
<

1
𝑎
⇔ 𝑛 > 𝑎.

This shows that for every 𝑎 ∈ 𝐾 , there is some natural number 𝑛 greater
than 𝑎, so N is not bounded from above.
Similarly, no negative element can be an upper bound ofN, because if 𝑥 < 0,
then −𝑥 > 0 and the same argument applies.

⊓⊔

Remark.
Examples 2.16 and 2.17 say that Q is Archimedean but Q(𝑡) isn’t.

2.3 The real field R

Let 𝐾 be an ordered field and 𝑋 ⊆ 𝐾 be a bounded from above subset. The
supremum of 𝑋 , denoted sup 𝑋 is the least upper bound of 𝑋 , in other words,
among all upper bounds 𝑀 ∈ 𝐾 of 𝑋 , i.e. 𝑥 ≤ 𝑀 for every 𝑥 ∈ 𝑋 , sup 𝑋 ∈ 𝐾 is
the least of them. Therefore, sup 𝑋 ∈ 𝐾 has the following properties:
(i) (upper bound) For every 𝑥 ∈ 𝑋 , 𝑥 ≤ sup 𝑋 .
(ii) (least upper bound) Given any 𝑎 ∈ 𝐾 such that 𝑥 ≤ 𝑎 for every 𝑥 ∈ 𝑋 , then

sup 𝑋 ≤ 𝑎. In other words, if 𝑎 < sup 𝑋 then ∃𝑏 ∈ 𝑋 such that 𝑎 < 𝑏.
Lemma 2.19. If the supremum of a set 𝑋 exists, then it is unique.

Proof. Suppose 𝑎 = sup 𝑋 and 𝑏 = sup 𝑋 . By property (ii) above, 𝑎 ≤ 𝑏 since
𝑎 is the least upper bound of 𝑋 . Similarly, since 𝑏 is also the least upper bound,
we have 𝑏 ≤ 𝑎. Therefore, 𝑎 = 𝑏. ⊓⊔
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Lemma 2.20. If a set 𝑋 has a maximum element, then max 𝑋 = sup 𝑋 .

Proof. Indeed, max 𝑋 is obviously an upper bound and any other upper bound
is greater than or equal to the maximum. ⊓⊔

Example 2.21. Consider the set 𝐼𝑛 = {1, 2, . . . , 𝑛} ⊆ Q. Then

sup 𝐼𝑛 = max 𝐼𝑛 = 𝑛.

Example 2.22. Consider the set

𝑋 =

{
−1
𝑛

; 𝑛 ∈ N
}
⊆ Q.

Then sup 𝑋 = 0. Indeed, 0 is an upper bound for 𝑋 , and given any 𝑎 < 0, we
can find 𝑛 ∈ N such that − 1

𝑛
> 𝑎, since Q is an Archimedean field. Hence, no

number less than 0 can be an upper bound of 𝑋 , so 0 is the least upper bound.

Similar to the idea of supremum, the infimum of a bounded from below set
𝑋 ⊆ 𝐾 , denoted inf 𝑋 , is the greatest lower bound. The element inf 𝑋 ∈ 𝐾 has
the following properties:

(i) (lower bound) For every 𝑥 ∈ 𝑋 , 𝑥 ≥ inf 𝑋 .
(ii) (greatest lower bound) Given any 𝑎 ∈ 𝐾 such that 𝑥 ≥ 𝑎 for every 𝑥 ∈ 𝑋 ,

then inf 𝑋 ≥ 𝑎.

The lemmas 2.19 and 2.20 extend naturally to the notion of infimum, namely, if
𝑋 ⊆ 𝐾 has a minimum element 𝑚 then 𝑚 = inf 𝑋 . Additionally, the infimum is
unique.

This discussion leads to the following Theorem:

Theorem 2.23. Let 𝑋 ⊆ 𝐾 be a bounded subset of an ordered field 𝐾 . Then,

inf 𝑋 ∈ 𝑋 ⇔ inf 𝑋 = min 𝑋

and
sup 𝑋 ∈ 𝑋 ⇔ sup 𝑋 = max 𝑋.

In particular, every finite set has a supremum and infimum.

Example 2.24. Consider the set 𝑋 = (𝑎, 𝑏), an open interval in a ordered field
𝐾 . Then inf 𝑋 = 𝑎 and sup 𝑋 = 𝑏. Indeed, 𝑎 is a lower bound, by definition
of interval, suppose 𝑐 > 𝑎, we claim 𝑐 can’t be a lower bound. For instance,
consider 𝑑 = 𝑎+𝑐

2 ∈ (𝑎, 𝑏). We have 𝑑 < 𝑐 if 𝑐 < 𝑏, hence the conclusion.

Example 2.25. Let 𝑋 =
{ 1

2𝑛 | 𝑛 ∈ N
}
⊆ Q. Then inf 𝑋 = 0 and sup 𝑋 = 1

2 .
Notice that max 𝑋 = 1

2 , so by Lemma 2.20, sup 𝑋 = 1
2 .

Now, 0 is clearly a lower bound. Suppose 𝑐 > 0. Since Q is Archimedean, we
can find 𝑛 ∈ N such that 𝑛 + 1 > 1

𝑐
. By Bernoulli’s inequality (Theorem 2.12),

we have
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2𝑛 = (1 + 1)𝑛 ≥ 1 + 𝑛 > 1
𝑐
,

hence 𝑐 > 1
2𝑛 , and so 𝑐 cannot be a lower bound. It follows that inf 𝑋 = 0.

Lemma 2.26. (Pythagoras) There is no 𝑥 ∈ Q satisfying 𝑥2 = 2.

Proof. Suppose, for contradiction, that 𝑥 =
𝑝

𝑞
∈ Q satisfies 𝑥2 = 2, where

𝑝, 𝑞 ∈ Z, 𝑞 ≠ 0, and the fraction is in lowest terms. Then(
𝑝

𝑞

)2
= 2 ⇒ 𝑝2 = 2𝑞2.

Now, consider the prime factorizations of both sides. Since 𝑝2 and 𝑞2 are perfect
squares, their factorizations contain an even number of each prime, including
the prime 2. However, 2𝑞2 introduces one additional factor of 2, making the
total number of factors of 2 in 2𝑞2 odd. This contradicts the fact that 𝑝2 has an
even number of factors of 2. Hence, we cannot have 𝑝2 = 2𝑞2, and therefore√

2 ∉ Q. ⊓⊔

Theorem 2.27. Consider the sets of rational numbers

𝑋 = {𝑥 ∈ Q | 𝑥 ≥ 0 and 𝑥2 < 2} and 𝑌 = {𝑦 ∈ Q | 𝑦 > 0 and 𝑦2 > 2}.

There are no rational numbers 𝑎, 𝑏 ∈ Q such that 𝑎 = sup 𝑋 and 𝑏 = inf𝑌 .

Proof. We prove the result concerning the supremum; the statement about the
infimum follows analogously.

First, we claim that 𝑋 has no maximum. Indeed, given any 𝑥 ∈ 𝑋 , choose
𝑟 ∈ Q such that 𝑟 < 1 and

0 < 𝑟 <
2 − 𝑥2

2𝑥 + 1
.

Note that 𝑟 < 1 ⇒ 𝑟2 < 𝑟, and we compute

(𝑥 + 𝑟)2 = 𝑥2 + 2𝑥𝑟 + 𝑟2 < 𝑥2 + 2𝑥𝑟 + 𝑟 = 𝑥2 + 𝑟 (2𝑥 + 1) < 𝑥2 + (2 − 𝑥2) = 2.

Therefore, 𝑥 + 𝑟 ∈ 𝑋 , so 𝑥 is not a maximum.
Similarly, one can show that𝑌 has no minimum: given any 𝑦 ∈ 𝑌 , there exists

𝑟 > 0 such that 𝑦 − 𝑟 ∈ 𝑌 .
Also, observe that every element of 𝑋 is strictly less than every element of

𝑌 . Indeed, if 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , then 𝑥2 < 2 < 𝑦2, so

0 < 𝑦2 − 𝑥2 = (𝑦 − 𝑥) (𝑦 + 𝑥) ⇒ 𝑦 − 𝑥 > 0 ⇒ 𝑥 < 𝑦.

Now suppose, for contradiction, that there exists 𝑎 ∈ Q such that 𝑎 = sup 𝑋 .
Then 𝑎 ∉ 𝑋 , otherwise it would be the maximum of 𝑋 , contradicting the previous
claim.
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If 𝑎 ∈ 𝑌 , then, since 𝑌 has no minimum, there exists 𝑏 ∈ 𝑌 such that 𝑏 < 𝑎.
But then 𝑥 < 𝑏 < 𝑎 for every 𝑥 ∈ 𝑋 , contradicting the fact that 𝑎 is the least
upper bound of 𝑋 .

We conclude that 𝑎 ∉ 𝑋 and 𝑎 ∉ 𝑌 , so 𝑎2 = 2, implying that 𝑎 =
√

2, which
contradicts Lemma 2.26, since

√
2 ∉ Q. Therefore, sup 𝑋 ∉ Q, and the same

argument applies to inf𝑌 . ⊓⊔

Since every ordered field contains Q, it follows from the Theorem above that
if there exists an ordered field 𝐾 in which every nonempty subset that is bounded
above has a supremum, then 𝑎 = sup 𝑋 exists in 𝐾 , and this element must satisfy
𝑎2 = 2.

In particular, such an ordered field 𝐾 must contain an element whose square
is 2. Hence,

√
2 ∈ 𝐾 , showing that 𝐾 properly extends Q in this case.

Example 2.28. (A bounded set with no supremum) Let𝐾 be a non-Archimedean
field. Then, by definition, N ⊆ 𝐾 is bounded from above. Let 𝑀 ∈ 𝐾 be an
upper bound for N. So 𝑛 + 1 ≤ 𝑀 for all 𝑛 ∈ N, but then 𝑛 ≤ 𝑀 − 1 and 𝑀 − 1
is also an upper bound. We conclude that if 𝑀 is an upper bound, 𝑀 − 1 is one
as well, hence supN doesn’t exists in 𝐾 .

We say that an ordered field 𝐾 is complete, if every nonempty bounded from
above subset 𝑋 ⊆ 𝐾 has a supremum in 𝐾 . This motivates the following axiom
(also called the fundamental axiom of mathematical analysis):

Axiom. There is a complete ordered field, represented by R, called the field
of real numbers.

Remark.
Notice that in a complete ordered field 𝐾 , if 𝑋 ⊆ 𝐾 is bounded from below

then 𝑋 has an infimum.

Remark.
From Example 2.28 we conclude that every complete ordered field is

Archimedean.

Theorem 2.29. If 𝐾, 𝐿 are complete ordered fields, then there is an unique
isomorphism 𝐹 : 𝐾 → 𝐿.

Proof. First we claim that given any complete ordered field 𝐹, there exists an
unique isomorphism 𝑓 : R → 𝐹. Let 1′ denotes the unit in 𝐹 and 0′ its zero
element. For 𝑛 ∈ N set

𝑛′ = 1′ + 1′ + · · · + 1′︸              ︷︷              ︸
𝑛 times

and (−𝑛)′ = −𝑛′.

Define 𝑓 : R→ 𝐹 by
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𝑓 (𝑥) =


0′ if 𝑥 = 0
𝑝′

𝑞′ if 𝑥 = 𝑝

𝑞
∈ Q \ {0}

sup
{
𝑝′

𝑞′ ∈ 𝐹 ; 𝑝

𝑞
< 𝑥

}
if 𝑥 ∈ R \ Q,

Let 𝑥, 𝑦 ∈ R. If 𝑥, 𝑦 ∈ Q then it’s easy to see that

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) and 𝑓 (𝑥 · 𝑦) = 𝑓 (𝑥) · 𝑓 (𝑦).

Suppose 𝑥 ∈ R \ Q and 𝑦 = 𝑟
𝑠
∈ Q. Then

𝑓 (𝑥 + 𝑦) = sup
{
𝑝′

𝑞′
;
𝑝

𝑞
< (𝑥 + 𝑦)

}
= sup

{
𝑝′

𝑞′
;
𝑝

𝑞
− 𝑟
𝑠
< 𝑥

}
= sup

{
𝑝′

𝑞′
− 𝑟

′

𝑠′
;
𝑝

𝑞
− 𝑟
𝑠
< 𝑥

}
+ 𝑟

′

𝑠′

= 𝑓 (𝑥) + 𝑓 (𝑦).

Similarly,

𝑓 (𝑥 · 𝑦) = sup
{
𝑝′

𝑞′
;
𝑝

𝑞
< (𝑥 · 𝑦)

}
= sup

{
𝑝′

𝑞′
;
𝑝

𝑞

1
𝑦
< 𝑥

}
= sup

{
𝑝′

𝑞′
1′

𝑦′
;
𝑝

𝑞

1
𝑦
< 𝑥

}
· 𝑦′

= 𝑓 (𝑥) · 𝑓 (𝑦).

The case where 𝑥, 𝑦 ∉ Q is left as an exercise.
We are left to prove that 𝑓 : R → 𝐹 defines a bĳection. It suffices to prove

surjectivity (since every nontrivial field homomorphism is injective). Given
𝑟 ∈ 𝐹, if 𝑟 = 𝑝′

𝑞′ then 𝑓

(
𝑝

𝑞

)
= 𝑟 . Otherwise, consider the bounded set

𝑋 =

{
𝑝

𝑞
∈ R ;

𝑝′

𝑞′
< 𝑟

}
.

Then 𝑥 := sup 𝑋 satisfies 𝑓 (𝑥) = 𝑟 .
We conclude that 𝑓 : R → 𝐹 defines an isomorphism. We prove that it is

unique. Suppose 𝑔 : R→ 𝐹 is another isomorphism. Then 𝐻 := 𝑓 ◦ 𝑔−1 : R→
R is an automorphism.
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We claim 𝐻 is the trivial automorphism. Since 𝐻 (1) = 1, we already know
that 𝐻 (𝑥) = 𝑥, if 𝑥 ∈ Q; moreover, 𝐻 is increasing. Suppose ℎ ∈ R \Q satisfies
𝐻 (ℎ) ≠ ℎ, say 𝐻 (ℎ) < ℎ. Archimedes’ principle guarantees the existence of
a rational number 𝑎 ∈ Q such that 𝐻 (ℎ) < 𝑎 < ℎ. However, this implies
𝑎 = 𝐻 (𝑎) < 𝐻 (ℎ), a contradiction. Therefore, 𝐻 is the trivial automorphism.
and 𝑓 = 𝑔.

Now, let 𝑓1 : R→ 𝐾 and 𝑓2 : R→ 𝐿 be isomorphisms. We define 𝐹 : 𝐾 → 𝐿

by
𝐹 (𝑥) = ( 𝑓2 ◦ 𝑓 −1

1 ) (𝑥).
Since the composition of bĳections is a bĳection and the composition of homo-
morphism is a homomorphism we conclude that 𝐹 is an isomorphism. Unique-
ness of 𝐹 follows from the uniqueness of 𝑓1 and 𝑓2. ⊓⊔

The Theorem above says that, in some suitable sense, R is the only complete
ordered field. Even though we assumed the existence of R through the funda-
mental axiom of mathematical analysis, it’s possible to construct a complete
ordered field explicitly:

Example 2.30. A Dedekind cut is a nonempty proper subset of the rationals,
𝐴 ⊆ Q, satisfying the following properties: 𝐴 has no maximum element, and if
𝑎 ∈ 𝐴, 𝑏 ∈ Q, and 𝑏 < 𝑎, then 𝑏 ∈ 𝐴.

Let D be the set of all Dedekind cuts. We define a field structure on D as
follows. The zero element is

0′ := {𝑥 ∈ Q ; 𝑥 < 0}.

Similarly, the multiplicative identity is defined by

1′ := {𝑥 ∈ Q ; 𝑥 < 1}.

We define an order on D by 𝐴 < 𝐵 if 𝐴 is a proper subset of 𝐵. Hence, the set
𝑃 of positive elements is defined by

𝑃 = {𝐴 ∈ D ; 𝐴 properly contains all negative rationals}.

The sum of two cuts is given by

𝐴 + 𝐵 = {𝑎 + 𝑏 ; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

The definition of 𝐴 · 𝐵 is more elaborate. First, suppose 𝐴, 𝐵 ∈ 𝑃. Then we set

𝐴 · 𝐵 = {𝑝 ∈ Q ; 𝑝 ≤ 𝑎 · 𝑏 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑎, 𝑏 > 0}.

In general, we define
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𝐴 · 𝐵 =


0′ if 𝐴 = 0′ or 𝐵 = 0′,

−(𝐴 · −𝐵) if 𝐴 > 0′ and 𝐵 < 0′,

−(−𝐴 · 𝐵) if 𝐴 < 0′ and 𝐵 > 0′,

−𝐴 · −𝐵 if 𝐴 < 0′ and 𝐵 < 0′.

The set D, together with the operations +, · and the order defined above,
forms a complete ordered field. The proof of this fact is left as an exercise.

Notice that since complete ordered fields are unique up to isomorphism by
Theorem 2.29, there exists an isomorphism 𝑓 : R→ D.

The discussion above leads to the conclusion that although there is no rational
number 𝑥 ∈ Q such that 𝑥2 = 2, there exists a positive real number 𝑥 ∈ R
satisfying 𝑥2 = 2. We denote this number by

√
2. There is nothing special about

the number 2; indeed, the argument generalizes to any 𝑛 ∈ N that is not a perfect
square. In such cases, we can similarly conclude that there exists a positive real
number, denoted by

√
𝑛, such that (

√
𝑛)2 = 𝑛.

We can generalize even further by considering the 𝑛th root of a natural number
𝑚 ∈ N, denoted by 𝑛

√
𝑚. This is defined as the unique positive real number 𝑥 ∈ R

such that 𝑥𝑛 = 𝑚.
The elements of the set R \Q are called irrational numbers. As we have just

seen, there are many such numbers; for instance, all numbers of the form 𝑛
√

2,
with 𝑛 ≥ 2, are irrational. In fact, we shall see next that irrational numbers are
everywhere in a precise sense—as a subset of the real numbers.

A subset 𝑋 ⊆ R is said to be dense in R if for every pair 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏,
there exists an element 𝑥 ∈ 𝑋 such that 𝑎 < 𝑥 < 𝑏. In other words, 𝑋 is dense in
R if every open, non-degenerate interval (𝑎, 𝑏) contains at least one point from
𝑋 .
Example 2.31. Let 𝑋 = R−Z. Then 𝑋 is dense inR. Indeed, every open interval
(𝑎, 𝑏) is an infinite set (since R is ordered). On the other hand, Z ∩ (𝑎, 𝑏) is
finite, hence we can always find a number 𝑥 ∉ Z with 𝑥 ∈ (𝑎, 𝑏).
Theorem 2.32. The set of rational numbers,Q, and the set of irrational numbers,
R \ Q, are both dense in R.

Proof. Let (𝑎, 𝑏) ⊂ R be a non-degenerate open interval. Since 𝑏− 𝑎 > 0, there
exists a natural number 𝑛 ∈ N such that 1

𝑛
< 𝑏 − 𝑎. Consider the set

𝑋 =

{
𝑚 ∈ Z :

𝑚

𝑛
≥ 𝑏

}
.

By the Archimedean property of R, the set 𝑋 is nonempty. Moreover, 𝑋 is
bounded below by 𝑛𝑏 ∈ R. By the well-ordering principle, 𝑋 has a smallest
element, say 𝑚0 ∈ 𝑋 . By minimality of 𝑚0, we have 𝑚0 − 1 ∉ 𝑋 , hence

𝑚0 − 1
𝑛

< 𝑏.
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We claim that 𝑚0−1
𝑛

> 𝑎. Suppose not. Then

𝑚0 − 1
𝑛

≤ 𝑎 < 𝑏 ≤ 𝑚0

𝑛
,

which implies

𝑏 − 𝑎 ≤ 𝑚0

𝑛
− 𝑚0 − 1

𝑛
=

1
𝑛
,

contradicting our choice of 𝑛. Therefore, the rational number 𝑚0−1
𝑛

lies in the
interval (𝑎, 𝑏), showing that Q is dense in R.

To prove that R \ Q is also dense in R, we apply the same argument mutatis
mutandis, replacing 1

𝑛
with an irrational number, such as

√
2
𝑛

. The rest of the
proof proceeds identically, yielding an irrational number in (𝑎, 𝑏). ⊓⊔

Theorem 2.33. (The Nested Intervals Principle) Let 𝐼1 ⊇ 𝐼2 ⊇ . . . ⊇ 𝐼𝑛 ⊇ . . .

be a decreasing sequence of closed intervals of the form 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛]. Then,

∞⋂
𝑛=1

𝐼𝑛 ≠ ∅,

and more precisely,
∞⋂
𝑛=1

𝐼𝑛 = [𝑎, 𝑏],

where 𝑎 = sup 𝑎𝑛 = sup{𝑎𝑛 : 𝑛 ∈ N} and 𝑏 = inf 𝑏𝑛 = inf{𝑏𝑛 : 𝑛 ∈ N}.

Proof. By hypothesis, we have 𝐼𝑛 ⊇ 𝐼𝑛+1 for all 𝑛 ∈ N, which implies the
following chain of inequalities:

𝑎1 ≤ 𝑎2 ≤ . . . ≤ 𝑎𝑛 ≤ . . . ≤ 𝑏𝑛 ≤ . . . ≤ 𝑏2 ≤ 𝑏1.

In particular, the sequence (𝑎𝑛) is increasing and bounded above by 𝑏1, so the
supremum

𝑎 := sup{𝑎𝑛 : 𝑛 ∈ N} ∈ R
is well defined. Similarly, since (𝑏𝑛) is decreasing and bounded below by 𝑎1,
the infimum

𝑏 := inf{𝑏𝑛 : 𝑛 ∈ N} ∈ R
is also well defined.

Since each 𝑏𝑛 is an upper bound for the set {𝑎𝑘 : 𝑘 ∈ N}, it follows that
𝑎 ≤ 𝑏𝑛 for all 𝑛 ∈ N. Hence,

𝑎𝑛 ≤ 𝑎 ≤ 𝑏𝑛 for all 𝑛 ∈ N.

By a similar argument, 𝑎𝑛 ≤ 𝑏 ≤ 𝑏𝑛 for all 𝑛 ∈ N. Therefore, the closed interval
[𝑎, 𝑏] is contained in every 𝐼𝑛, i.e.,
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[𝑎, 𝑏] ⊆ 𝐼𝑛 for all 𝑛 ∈ N.

We now show that no point outside [𝑎, 𝑏] lies in the intersection. Suppose 𝑥 < 𝑎.
Then, since 𝑎 = sup 𝑎𝑛, there exists 𝑛0 ∈ N such that 𝑥 < 𝑎𝑛0 , and thus 𝑥 ∉ 𝐼𝑛0 ,
implying 𝑥 ∉

⋂∞
𝑛=1 𝐼𝑛.

Similarly, if 𝑥 > 𝑏, then since 𝑏 = inf 𝑏𝑛, there exists 𝑛1 ∈ N such that
𝑥 > 𝑏𝑛1 , so 𝑥 ∉ 𝐼𝑛1 and again 𝑥 ∉

⋂∞
𝑛=1 𝐼𝑛.

We conclude that
∞⋂
𝑛=1

𝐼𝑛 = [𝑎, 𝑏] .

⊓⊔

Theorem 2.34. The set of real numbers R is uncountable.

Proof. Let 𝑋 = {𝑥1, 𝑥2, . . .} ⊆ R be a countable subset of R, which we know
exists by Theorem 1.58. We claim there is always an 𝑥 ∈ R such that 𝑥 ∉ 𝑋 . Pick
a closed interval 𝐼1 not containing 𝑥1, this is possible since R is infinite. Proceed
by induction, after setting 𝐼𝑛 not containing 𝑥𝑛, we select 𝐼𝑛+1 ⊆ 𝐼𝑛 as a closed
interval which doesn’t contain 𝑥𝑛+1. Proceeding this way, we construct a nested
sequence of closed intervals 𝐼1 ⊇ 𝐼2 ⊇ . . . 𝐼𝑛 ⊇ . . .. Therefore, by Theorem
2.33, there is at least one 𝑥 ∈ R that is not in 𝑋 . ⊓⊔

Corollary 2.35. Any non-degenerate open interval (𝑎, 𝑏) ⊂ R is uncountable.

Proof. Define the function 𝑓 : (0, 1) → (𝑎, 𝑏) by

𝑓 (𝑥) = (𝑏 − 𝑎)𝑥 + 𝑎.

This function is clearly bĳective. Therefore, it suffices to show that the interval
(0, 1) is uncountable.

Suppose, for contradiction, that (0, 1) is countable. Then the set (0, 1] =

(0, 1) ∪ {1} is also countable as the union of two countable sets. Moreover, for
each integer 𝑛 ∈ Z, the interval

(𝑛, 𝑛 + 1] = {𝑥 ∈ R : 𝑛 < 𝑥 ≤ 𝑛 + 1}

is a translation of (0, 1], and thus countable.
Since

R =
⋃
𝑛∈Z

(𝑛, 𝑛 + 1],

we would have that R is a countable union of countable sets, hence countable.
This contradicts the fact that R is uncountable.

Therefore, (0, 1), and hence (𝑎, 𝑏), is uncountable. ⊓⊔

Corollary 2.36. The set of irrational numbers R \ Q is uncountable.
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Proof. Suppose, for contradiction, that R \ Q is countable. Since the set of
rational numbers Q is also countable, it would follow that

R = Q ∪ (R \ Q)

is a countable union of countable sets, and therefore countable. This contradicts
the fact that R is uncountable. Hence, R \ Q must be uncountable. ⊓⊔

Exercises

1. Let 𝐾, 𝐿 be fields. A function 𝑓 : 𝐾 → 𝐿 is called homomorphism when
𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) and 𝑓 (𝑥 · 𝑦) = 𝑓 (𝑥) · 𝑓 (𝑦), for any 𝑥, 𝑦 ∈ 𝐾 . Given
a homomorphism 𝑓 : 𝐾 → 𝐿 show that 𝑓 (0) = 0. Also, show that only one
of the following happens: 𝑓 (𝑥) = 0,∀𝑥 ∈ 𝐾 or 𝑓 (1) = 1 and 𝑓 is injective.

2. Given a homomorphism 𝑓 : Q → Q. Show that only one of the following
happens: 𝑓 (𝑥) = 0,∀𝑥 ∈ Q or 𝑓 (𝑥) = 𝑥,∀𝑥 ∈ Q.

3. Explain why Z, with its usual operations, is not a field.
4. Let 𝐾 be an ordered field and 𝑎, 𝑏 ∈ 𝐾 . Show that 𝑎2 + 𝑏2 = 0 ⇔ 𝑎 = 𝑏 = 0.
5. Let F (𝑋;𝐾) denotes the set of all functions between 𝑋 and 𝐾 . Given

𝑓 , 𝑔 ∈ F (𝑋;𝐾), define the following operations on set the set F (𝑋;𝐾):
( 𝑓 + 𝑔) (𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) and ( 𝑓 · 𝑔) (𝑥) = 𝑓 (𝑥) · 𝑔(𝑥). Is F (𝑋;𝐾) a field?

6. Let 𝑥, 𝑦 be positive elements of an ordered field 𝐾 . Show that

𝑥 < 𝑦 ⇔ 𝑥−1 > 𝑦−1

7. Let 𝑥 ∈ 𝐾 be a nonzero element in a ordered field 𝐾 and 𝑛 ∈ N. Show that

(1 + 𝑥)2𝑛 > 1 + 2𝑛 · 𝑥

8. Let 𝐾 be an ordered field and 𝑎, 𝑥 ∈ 𝐾 . If 𝑎 and 𝑎 + 𝑥 are positive, show that

(𝑎 + 𝑥)𝑛 ≥ 𝑎𝑛 + 𝑛 · 𝑎𝑛−1 · 𝑥

.
9. Given an ordered field 𝐾 , show the following are equivalent:

a. 𝐾 is Archimedean;
b. Z is unbounded from below and from above;
c. Q is unbounded from below and from above.

10. Given an ordered field 𝐾 , show that 𝐾 is Archimedean⇔∀𝜖 > 0 ∈ 𝐾, ∃𝑛 ∈
N such that 1

2𝑛 < 𝜖 .
11. Let 𝑎 > 1 be an element of an Archimedean field 𝐾 . Consider the function

𝑓 : Z→ 𝐾 , given by 𝑓 (𝑛) = 𝑎𝑛. Show the following:

a. 𝑓 (Z) is not bounded from above;
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b. inf 𝑓 (Z) = 0.

12. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q. Show that

𝑎 + 𝑏
√

2 = 𝑐 + 𝑑
√

2 ⇔ 𝑎 = 𝑐 and 𝑏 = 𝑑.

13. Let 𝑎, 𝑏 ∈ Q be positive numbers. Show that
√
𝑎 +

√
𝑏 is rational ⇔ both

√
𝑎 and

√
𝑏 are rational.

14. Let 𝑋 = { 1
𝑛

; 𝑛 ∈ N }. Show that inf 𝑋 = 0.
15. Let 𝐴 ⊆ 𝐵 ⊆ R be nonempty bounded sets. Show that

inf 𝐵 ≤ inf 𝐴 ≤ sup 𝐴 ≤ sup 𝐵.

16. Let 𝐴 ⊆ R be a bounded nonempty set. Show that

sup−𝐴 = − inf 𝐴.

17. Let 𝐴 ⊆ R be a bounded nonempty set and 𝑐 > 0, show that

sup 𝑐 · 𝐴 = 𝑐 · sup 𝐴

.
18. Let 𝐴, 𝐵 ⊆ R be bounded nonempty sets. Show that

sup(𝐴 + 𝐵) = sup 𝐴 + sup 𝐵;

and similarly, show that

sup(𝐴 · 𝐵) = sup 𝐴 · sup 𝐵,

where 𝐴 · 𝐵 = {𝑥 · 𝑦 ; 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.
19. Let 𝑝 > 1 be a natural number. Show the set

𝑋 =

{
𝑚

𝑝𝑛
; 𝑚 ∈ Z and 𝑛 ∈ N

}
is dense in R.

20. A number 𝑟 ∈ R is said to be algebraic if it is a root of a polynomial
𝑝(𝑥) ∈ Z[𝑥] with integral coefficients.

a. Show that the set of all polynomials with integral coefficients, Z[𝑥], is
countable.

b. Show that the set of all algebraic numbers is countable and dense in R.

21. Let 𝑋 = R− 𝐴, where 𝐴 is a countable subset of R. Show that for each open
interval (𝑎, 𝑏), the intersection 𝑋 ∩ (𝑎, 𝑏) is uncountable. In particular, 𝑋 is
dense in R.
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22. A number 𝑟 ∈ R is said to be transcendental if it’s not algebraic. Show that
the set of all transcendental numbers is uncountable and dense in R.

23. Show that the set of algebraic numbers, usually denoted by Q, can be given
a field structure. This exercise assumes knowledge of Abstract algebra, you
may skip it if you want.

24. Give an Example of open bounded nested intervals whose intersection is
empty.

25. Show that the set D of all Dedekind cuts (see Example 2.30) is a complete
ordered field.

26. Let 𝑋,𝑌 be nonempty sets and 𝑓 : 𝑋 × 𝑌 → R a bounded function, i.e.
| 𝑓 (𝑥) | ≤ 𝑐. Let 𝑓1(𝑥) = sup{ 𝑓 (𝑥, 𝑦); 𝑦 ∈ 𝑌 } and 𝑓2(𝑦) = sup{ 𝑓 (𝑥, 𝑦); 𝑥 ∈
𝑋}. Show that

sup
𝑥∈𝑋

𝑓1(𝑥) = sup
𝑦∈𝑌

𝑓2(𝑦).

In other words, sup commutes with itself:

sup
𝑥

(sup
𝑦

𝑓 (𝑥, 𝑦)) = sup
𝑦

(sup
𝑥

𝑓 (𝑥, 𝑦))

27. Generalize the exercise above and show that

sup
𝑦

(inf
𝑥
𝑓 (𝑥, 𝑦)) ≤ inf

𝑥
(sup

𝑦

𝑓 (𝑥, 𝑦))

28. Let 𝑥, 𝑦 ∈ R be positive numbers. Show that √𝑥 · 𝑦 ≤ 𝑥+𝑦
2

29. Show that the function 𝑓 : R → (−1, 1) defined by 𝑓 (𝑥) = 𝑥√
1+𝑥2 is a

bĳection.



Chapter 3
Sequences and Series of real numbers

3.1 Sequences

A sequence of real numbers, denoted by 𝑥𝑛 := 𝑥(𝑛), is a function 𝑥 : N→ R.
There is no universal notation for a sequence, but common ones include

{𝑥𝑛}𝑛∈N, x𝑛, {𝑥1, 𝑥2, . . .}, (𝑥𝑛).

A sequence 𝑥𝑛 is bounded if there exist 𝑎, 𝑏 ∈ R with

𝑎 ≤ 𝑥𝑛 ≤ 𝑏 (𝑛 ∈ N).

Equivalently, 𝑥(N) ⊆ [𝑎, 𝑏]. A sequence is unbounded if it is not bounded.
It is bounded above if 𝑥𝑛 ≤ 𝑏 for some 𝑏 ∈ R, and bounded below if 𝑎 ≤ 𝑥𝑛

for some 𝑎 ∈ R. A sequence is bounded ⇐⇒ it is both bounded above and
bounded below.

Let 𝐾 ⊆ N be infinite. Then 𝐾 is countable, so there exists a bĳection
𝑏 : N→ 𝐾 , 𝑘 ↦→ 𝑛𝑘 . For any sequence 𝑥 : N→ R, the sequence

𝑥𝑛𝑘 := 𝑥 ◦ 𝑏 : N→ R

is called a subsequence of 𝑥𝑛.
Example 3.1. If 𝐾 = {𝑛 ∈ N : 𝑛 even} and 𝑏(𝑘) = 2𝑘 , then 𝑥𝑛𝑘 = 𝑥2𝑘 is a
subsequence of 𝑥𝑛. For instance, if 𝑥𝑛 = (−1)𝑛, then 𝑥2𝑘 = 1 for all 𝑘 .

Every subsequence of a bounded sequence is bounded.
A sequence is nondecreasing if 𝑥𝑛 ≤ 𝑥𝑛+1 for all 𝑛, and increasing if 𝑥𝑛 < 𝑥𝑛+1

for all 𝑛. Similarly, it is nonincreasing if 𝑥𝑛 ≥ 𝑥𝑛+1 for all 𝑛, and decreasing if
𝑥𝑛 > 𝑥𝑛+1 for all 𝑛.

A sequence that is nondecreasing, nonincreasing, increasing, or decreasing
is called monotone.
Lemma 3.2. A monotone sequence 𝑥𝑛 is bounded ⇐⇒ it has a bounded
subsequence.

47
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Proof. The forward direction is immediate. For the converse, suppose 𝑥𝑛𝑘 is a
bounded subsequence of a monotone sequence 𝑥𝑛. Assume 𝑥𝑛 is nondecreasing.
Then 𝑥𝑛𝑘 ≤ 𝑏 for some 𝑏 ∈ R. For any 𝑛, choose 𝑛𝑘 > 𝑛. Then 𝑥𝑛 ≤ 𝑥𝑛𝑘 ≤ 𝑏,
so 𝑥𝑛 is bounded. ⊓⊔

Example 3.3. The sequence 𝑥𝑛 = 1, i.e. {1, 1, 1, . . .}, is constant, bounded,
nonincreasing, and nondecreasing.

Example 3.4. The sequence 𝑥𝑛 = 𝑛, i.e. {1, 2, 3, . . .}, is an unbounded increas-
ing sequence.

Example 3.5. The sequence 𝑥𝑛 = 1
𝑛
, i.e. {1, 1

2 ,
1
3 , . . .}, is a bounded decreasing

sequence, since 0 < 𝑥𝑛 ≤ 1.

Example 3.6. The sequence 𝑥𝑛 = 1+ (−1)𝑛, i.e. {0, 2, 0, 2, . . .}, is bounded but
not monotone.

Example 3.7. The sequence

𝑥𝑛 = 1 + 1
1!

+ 1
2!

+ · · · + 1
𝑛!

is increasing and bounded, since

0 < 𝑥𝑛 < 1 + 1 + 1
2
+ 1

4
+ · · · + 1

2 𝑛−1 < 3.

The sequence 𝑦𝑛 = (1 + 1
𝑛
)𝑛 is related: by the binomial Theorem, 𝑦𝑛 ≤ 𝑥𝑛,

hence 0 < 𝑦𝑛 < 3.

Fig. 3.1: 𝑦𝑛 = (1 + 1
𝑛
)𝑛

Example 3.8. Let 𝑥1 = 0, 𝑥2 = 1, and define 𝑥𝑛+2 = 𝑥𝑛+1 + 𝑥𝑛 for 𝑛 ≥ 1. It is
easy to check that 0 ≤ 𝑥𝑛 ≤ 1. A computation shows

𝑥2𝑛 = 1 −
(

1
4 + 1

16 + · · · + 1
4𝑛−1

)
, 𝑥2𝑛+1 = 1

2

(
1 + 1

4 + 1
16 + · · · + 1

4𝑛−1

)
.
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Thus 𝑥𝑛 is bounded but not monotone.

Fig. 3.2: 𝑥𝑛+2 = 𝑥𝑛+1 + 𝑥𝑛

Example 3.9. Let 𝑎 ∈ R with 0 < 𝑎 < 1. The sequence

𝑥𝑛 = 1 + 𝑎 + 𝑎2 + · · · + 𝑎𝑛 =
1 − 𝑎 𝑛+1

1 − 𝑎

is increasing (since 𝑎 > 0) and bounded, since 0 < 𝑥𝑛 ≤ 1
1−𝑎 .

Example 3.10. Consider the sequence {1,
√

2, 3√3, 4√4, . . .} given by 𝑥𝑛 = 𝑛
√
𝑛. It

increases for 𝑛 = 1, 2. We claim that for 𝑛 ≥ 3 it is decreasing. Indeed, 𝑥𝑛+1 < 𝑥𝑛
is equivalent to (𝑛 + 1)𝑛 < 𝑛 𝑛+1, i.e.(

1 + 1
𝑛

)𝑛
< 𝑛,

which holds for 𝑛 ≥ 3 by Example 3.7. Hence 𝑥𝑛 is bounded.

Fig. 3.3: 𝑥𝑛 = 𝑛
√
𝑛
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3.2 The limit of a sequence

Informally, to say that 𝑎 ∈ R is the limit of the sequence 𝑥𝑛 means that the terms
of the sequence become arbitrarily close to 𝑎 as 𝑛 grows large. More precisely:

lim
𝑛→∞

𝑥𝑛 = 𝑎 ≔ ∀𝜖 > 0 ∃𝑛0 ∈ N (𝑛 > 𝑛0 ⇒ |𝑥𝑛 − 𝑎 | < 𝜖).

In words: “The limit of the sequence 𝑥𝑛 is 𝑎 if, for every 𝜖 > 0, no matter
how small, there exists an index 𝑛0 such that |𝑥𝑛 − 𝑎 | < 𝜖 whenever 𝑛 > 𝑛0.”

Equivalently, every open interval (𝑎 − 𝜖, 𝑎 + 𝜖) centered at 𝑎 contains all but
finitely many terms of the sequence.

Remark. It is common practice to omit “𝑛→ ∞” and write simply lim 𝑥𝑛.

When lim 𝑥𝑛 = 𝑎, we say that 𝑥𝑛 converges to 𝑎, also written

𝑥𝑛 → 𝑎,

and call 𝑥𝑛 convergent. If 𝑥𝑛 is not convergent, we say it is divergent, i.e. there
is no 𝑎 ∈ R with lim 𝑥𝑛 = 𝑎.

Theorem 3.11. (Uniqueness of limits) If lim 𝑥𝑛 = 𝑎 and lim 𝑥𝑛 = 𝑏, then 𝑎 = 𝑏.

Proof. Suppose lim 𝑥𝑛 = 𝑎 and 𝑏 ≠ 𝑎. It suffices to show that lim 𝑥𝑛 ≠ 𝑏. Let
𝜖 =

|𝑏−𝑎 |
2 . Since lim 𝑥𝑛 = 𝑎, there exists 𝑛0 such that 𝑛 > 𝑛0 ⇒ |𝑥𝑛 − 𝑎 | < 𝜖 .

Hence, for 𝑛 > 𝑛0 we have 𝑥𝑛 ∉ (𝑏 − 𝜖, 𝑏 + 𝜖), and therefore lim 𝑥𝑛 ≠ 𝑏. ⊓⊔

Theorem 3.12. If lim 𝑥𝑛 = 𝑎, then every subsequence 𝑥𝑛𝑘 also satisfies lim 𝑥𝑛𝑘 =

𝑎.

Proof. Given 𝜖 > 0, choose 𝑛0 such that 𝑛 > 𝑛0 ⇒ |𝑥𝑛 − 𝑎 | < 𝜖 . Since 𝑛𝑘 > 𝑛0
implies |𝑥𝑛𝑘 − 𝑎 | < 𝜖 , the same 𝑛0 works for the subsequence. ⊓⊔

Corollary 3.13. If 𝑘 ∈ N and lim 𝑥𝑛 = 𝑎, then lim 𝑥𝑛+𝑘 = 𝑎, since 𝑥𝑛+𝑘 is a
subsequence of 𝑥𝑛.

In other words, Corollary 3.13 says that the limit of a sequence does not
change if we omit finitely many terms.

Theorem 3.14. Every convergent sequence 𝑥𝑛 is bounded.

Proof. Suppose lim 𝑥𝑛 = 𝑎. Then there exists 𝑛0 such that 𝑛 > 𝑛0 ⇒ 𝑥𝑛 ∈
(𝑎 − 1, 𝑎 + 1). Let

𝑀 = max{|𝑥1 |, . . . , |𝑥𝑛0 |, |𝑎 − 1|, |𝑎 + 1|}.

Then |𝑥𝑛 | ≤ 𝑀 for all 𝑛, so 𝑥𝑛 is bounded. ⊓⊔
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Example 3.15. The sequence {0, 1, 0, 1, 0, 1, . . .} is not convergent by Theo-
rem 3.12, since it has subsequences with different limits: 𝑥2𝑛 = 1 and 𝑥2𝑛−1 = 0.
This shows that a bounded sequence need not be convergent, i.e. the converse
of Theorem 3.14 fails.

Theorem 3.16. (Monotone Convergence Theorem) Every bounded monotone
sequence is convergent.

Proof. Assume 𝑥𝑛 is nondecreasing (the other cases are analogous). Since 𝑥𝑛
is bounded, 𝑎 = sup{𝑥𝑛} is well defined. Given 𝜖 > 0, choose 𝑛0 such that
𝑎 − 𝜖 < 𝑥𝑛0 . By monotonicity, 𝑎 − 𝜖 < 𝑥𝑛 for all 𝑛 ≥ 𝑛0. Clearly 𝑥𝑛 ≤ 𝑎, so
𝑎 − 𝜖 < 𝑥𝑛 < 𝑎 + 𝜖 for 𝑛 > 𝑛0. Thus lim 𝑥𝑛 = 𝑎. ⊓⊔

Corollary 3.17. If a monotone sequence 𝑥𝑛 has a convergent subsequence, then
𝑥𝑛 is convergent.

Proof. Suppose 𝑥𝑛 is increasing (the other cases are analogous) and that 𝑥𝑛𝑘
converges. Then 𝑥𝑛𝑘 is bounded, say |𝑥𝑛𝑘 | ≤ 𝑀 for all 𝑘 . Given any 𝑛 ∈ N,
we can choose an index 𝑘0 such that 𝑛 < 𝑛𝑘0 . Since 𝑥𝑛 is increasing, we
have 𝑥𝑛 < 𝑥𝑛𝑘0

≤ 𝑀 . Thus 𝑥𝑛 is bounded. By Theorem 3.16, every bounded
monotone sequence converges, and therefore 𝑥𝑛 is convergent. ⊓⊔

Example 3.18. Every constant sequence 𝑥𝑛 = 𝑘 ∈ R is convergent and lim 𝑥𝑛 =

𝑘 .

Example 3.19. The sequence {1, 2, 3, 4, . . .} is divergent because it is un-
bounded.

Example 3.20. The sequence {1,−1, 1,−1, . . .} is divergent because it has two
subsequences converging to different values, namely 𝑥2𝑛 = 1 and 𝑥2𝑛−1 = −1.

Example 3.21. The sequence 𝑥𝑛 = 1
𝑛

is convergent with lim 𝑥𝑛 = 0. Indeed,
since R is Archimedean, given 𝜖 > 0 there exists 𝑛0 ∈ N such that 1

𝑛0
< 𝜖 . Then

for all 𝑛 > 𝑛0, we have 1
𝑛
< 𝜖 .

Example 3.22. Let 0 < 𝑎 < 1. The sequence 𝑥𝑛 = 𝑎𝑛 is monotone decreasing
and bounded below by 0, hence convergent. Notice that lim 𝑥𝑛 = 0 in this case.

Theorem 3.23. If lim 𝑥𝑛 = 0 and 𝑦𝑛 is a bounded sequence, then

lim(𝑥𝑛 · 𝑦𝑛) = 0.

Proof. Since 𝑦𝑛 is bounded, there exists 𝑐 > 0 such that |𝑦𝑛 | < 𝑐 for all 𝑛. Let
𝜖 > 0 be given. Since lim 𝑥𝑛 = 0, there exists 𝑛0 ∈ N such that 𝑛 > 𝑛0 =⇒
|𝑥𝑛 | < 𝜖

𝑐
. Then for all 𝑛 > 𝑛0, we have

|𝑥𝑛𝑦𝑛 | ≤ |𝑥𝑛 | · |𝑦𝑛 | < 𝜖
𝑐
· 𝑐 = 𝜖,

which proves that lim(𝑥𝑛𝑦𝑛) = 0. ⊓⊔
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Example 3.24. It follows from the Theorem above that

lim
𝑛→∞

sin 𝑛
𝑛

= 0,

since | sin 𝑛| ≤ 1 and 1
𝑛
→ 0.

Theorem 3.25. Let lim 𝑥𝑛 = 𝑎 and lim 𝑦𝑛 = 𝑏. Then
1. lim(𝑥𝑛 + 𝑦𝑛) = 𝑎 + 𝑏 and lim(𝑥𝑛 − 𝑦𝑛) = 𝑎 − 𝑏;
2. lim(𝑥𝑛 · 𝑦𝑛) = 𝑎𝑏;
3. If 𝑏 ≠ 0, then lim

𝑥𝑛

𝑦𝑛
=
𝑎

𝑏
.

Proof. (1) Let 𝜖 > 0. Since lim 𝑥𝑛 = 𝑎 and lim 𝑦𝑛 = 𝑏, there exist 𝑁1, 𝑁2 ∈ N
such that

𝑛 > 𝑁1 =⇒ |𝑥𝑛 − 𝑎 | <
𝜖

2
, 𝑛 > 𝑁2 =⇒ |𝑦𝑛 − 𝑏 | <

𝜖

2
.

Let 𝑁 = max{𝑁1, 𝑁2}. For 𝑛 > 𝑁 ,

| (𝑥𝑛 + 𝑦𝑛) − (𝑎 + 𝑏) | ≤ |𝑥𝑛 − 𝑎 | + |𝑦𝑛 − 𝑏 | <
𝜖

2
+ 𝜖

2
= 𝜖,

so lim(𝑥𝑛 + 𝑦𝑛) = 𝑎 + 𝑏. The difference case is identical, since

| (𝑥𝑛 − 𝑦𝑛) − (𝑎 − 𝑏) | ≤ |𝑥𝑛 − 𝑎 | + |𝑦𝑛 − 𝑏 |.

(2) Convergent sequences are bounded, so there exists 𝑀 > 0 with |𝑥𝑛 | ≤ 𝑀

and |𝑦𝑛 | ≤ 𝑀 for all 𝑛 (one may take different bounds for 𝑥𝑛 and 𝑦𝑛; use
the larger). Let 𝜖 > 0. Choose 𝑁1 with 𝑛 > 𝑁1 =⇒ |𝑥𝑛 − 𝑎 | < 𝛿 and 𝑁2
with 𝑛 > 𝑁2 =⇒ |𝑦𝑛 − 𝑏 | < 𝛿, where we will specify 𝛿 > 0 shortly. For
𝑛 > max{𝑁1, 𝑁2},

|𝑥𝑛𝑦𝑛 − 𝑎𝑏 | = |𝑥𝑛𝑦𝑛 − 𝑎𝑦𝑛 + 𝑎𝑦𝑛 − 𝑎𝑏 | ≤ |𝑥𝑛 − 𝑎 | |𝑦𝑛 | + |𝑎 | |𝑦𝑛 − 𝑏 |.

Using the bound |𝑦𝑛 | ≤ 𝑀 , we get

|𝑥𝑛𝑦𝑛 − 𝑎𝑏 | ≤ 𝑀 |𝑥𝑛 − 𝑎 | + |𝑎 | |𝑦𝑛 − 𝑏 |.

Choose 𝛿 > 0 so that 𝑀𝛿 + |𝑎 |𝛿 < 𝜖 (for example 𝛿 = 𝜖/(𝑀 + |𝑎 |)). Then for
𝑛 > max{𝑁1, 𝑁2} the right-hand side is < 𝜖 , proving lim 𝑥𝑛𝑦𝑛 = 𝑎𝑏.

(Alternate standard decomposition: 𝑥𝑛𝑦𝑛 − 𝑎𝑏 = (𝑥𝑛 − 𝑎) (𝑦𝑛 − 𝑏) + 𝑎(𝑦𝑛 −
𝑏) + 𝑏(𝑥𝑛 − 𝑎), and each term tends to 0.)
(3) Assume 𝑏 ≠ 0. Since 𝑦𝑛 → 𝑏, there exists 𝑁0 such that for all 𝑛 > 𝑁0 we
have 𝑦𝑛 ∈ (𝑏 − 𝑏

2 , 𝑏 +
𝑏
2 ), in particular, 𝑦𝑛 > 0 for those values of 𝑛. Thus the

sequence 𝑦𝑛 is bounded away from 0 eventually, so the quotients are defined for
all large 𝑛.
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Let 𝜖 > 0. Pick 𝑁1 with 𝑛 > 𝑁1 =⇒ |𝑥𝑛 − 𝑎 | < 𝛿1 and 𝑁2 with 𝑛 > 𝑁2 =⇒
|𝑦𝑛−𝑏 | < 𝛿2, where we will choose 𝛿1, 𝛿2 > 0 below. For 𝑛 > max{𝑁0, 𝑁1, 𝑁2},���� 𝑥𝑛𝑦𝑛 − 𝑎

𝑏

���� = ����𝑥𝑛𝑏 − 𝑎𝑦𝑛𝑦𝑛𝑏

���� = |𝑏(𝑥𝑛 − 𝑎) − 𝑎(𝑦𝑛 − 𝑏) |
|𝑦𝑛 | |𝑏 |

≤ |𝑏 | |𝑥𝑛 − 𝑎 | + |𝑎 | |𝑦𝑛 − 𝑏 |
|𝑦𝑛 | |𝑏 |

.

Using |𝑦𝑛 | ≥ |𝑏 |
2 for such 𝑛, we obtain���� 𝑥𝑛𝑦𝑛 − 𝑎

𝑏

���� ≤ 2
|𝑏 |2

(
|𝑏 | |𝑥𝑛 − 𝑎 | + |𝑎 | |𝑦𝑛 − 𝑏 |

)
=

2
|𝑏 | |𝑥𝑛 − 𝑎 | +

2|𝑎 |
|𝑏 |2

|𝑦𝑛 − 𝑏 |.

Now choose 𝛿1, 𝛿2 > 0 so that

2
|𝑏 | 𝛿1 +

2|𝑎 |
|𝑏 |2

𝛿2 < 𝜖,

and pick 𝑁1, 𝑁2 accordingly. For 𝑛 > max{𝑁0, 𝑁1, 𝑁2} the left-hand side is < 𝜖 .
Hence lim

𝑥𝑛

𝑦𝑛
=
𝑎

𝑏
. ⊓⊔

Example 3.26. Let 𝑎 ∈ R be a positive number. The sequence 𝑥𝑛 = 𝑛
√
𝑎 is

bounded and monotone, hence converges. We claim that

lim
𝑛→∞

𝑛
√
𝑎 = 1.

Indeed, let 𝐿 = lim 𝑛
√
𝑎 and consider the subsequence 𝑦𝑛 = 𝑥𝑛(𝑛+1) . Then

𝐿 = lim 𝑦𝑛 = lim 𝑎
1

𝑛(𝑛+1) = lim 𝑎
1
𝑛
− 1

𝑛+1 =
lim 𝑎

1
𝑛

lim 𝑎
1

𝑛+1
= 1.

Example 3.27. Consider the sequence 𝑥𝑛 = 𝑛
√
𝑛 from Example 3.10. From

𝑛 ≥ 3 onward, the sequence is decreasing (and bounded), hence convergent. We
claim that

lim
𝑛→∞

𝑛
√
𝑛 = 1.

Let 𝐿 = lim 𝑛
√
𝑛 and consider the subsequence 𝑦𝑛 = 𝑥2𝑛 =

2𝑛√2𝑛. Then

𝐿2 = lim 𝑦𝑛 · 𝑦𝑛 = lim 𝑛
√

2𝑛 = lim
( 𝑛
√

2 · 𝑛
√
𝑛
)
= 1 · 𝐿 = 𝐿.

Thus 𝐿 = 0 or 𝐿 = 1. Since 𝑥𝑛 ≥ 1 for all 𝑛, we conclude 𝐿 = 1.

Example 3.28. The sequence

𝑥𝑛 = 1 + 1 + 1
2! + . . . +

1
𝑛!

is increasing. It is also bounded since
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2 ≤ 𝑥𝑛 ≤ 1 + 1 + 1
2 + . . . + 1

2𝑛−1 < 3.

Hence 𝑥𝑛 converges. Its limit, denoted by 𝑒, is called the Euler constant. Our
discussion shows that 2 < 𝑒 < 3. The increasing sequence 𝑦𝑛 = (1 + 1

𝑛
)𝑛 is also

related to 𝑒, since 𝑦𝑛 ≤ 𝑥𝑛 and lim 𝑦𝑛 = lim 𝑥𝑛 = 𝑒.

Fig. 3.4: 𝑥𝑛 = 1 + 1 + 1
2! + . . . +

1
𝑛!

Theorem 3.29. If lim 𝑥𝑛 = 𝑎 and 𝑎 > 0, then there exists 𝑛0 ∈ N such that
𝑥𝑛 > 0 for all 𝑛 > 𝑛0. An analogous statement holds if 𝑎 < 0, namely that
eventually 𝑥𝑛 < 0.

Proof. Since lim 𝑥𝑛 = 𝑎, there exists 𝑛0 ∈ N such that 𝑛 > 𝑛0 =⇒ |𝑥𝑛−𝑎 | < 𝑎
2 .

In particular, this implies 𝑥𝑛 > 𝑎
2 > 0 for 𝑛 > 𝑛0. The case 𝑎 < 0 follows

similarly. ⊓⊔

Corollary 3.30. If 𝑥𝑛 and 𝑦𝑛 are convergent sequences with 𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛,
then lim 𝑥𝑛 ≤ lim 𝑦𝑛.

Proof. Let
lim 𝑥𝑛 = 𝑎 and lim 𝑦𝑛 = 𝑏.

We want to show that 𝑎 ≤ 𝑏.
Suppose, for the sake of contradiction, that 𝑎 > 𝑏. Then 𝑎 − 𝑏 > 0. By

Theorem 3.29, since lim(𝑥𝑛 − 𝑦𝑛) = 𝑎 − 𝑏 > 0, there exists 𝑛0 ∈ N such that

𝑥𝑛 − 𝑦𝑛 > 0 for all 𝑛 > 𝑛0,

which implies
𝑥𝑛 > 𝑦𝑛 for all 𝑛 > 𝑛0,

a contradiction. ⊓⊔

Corollary 3.31. If 𝑥𝑛 is convergent and 𝑥𝑛 ≥ 𝑎 ∈ R for all 𝑛, then lim 𝑥𝑛 ≥ 𝑎.

Proof. Take 𝑥𝑛 = 𝑎 in Corollary 3.30. ⊓⊔
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Theorem 3.32. (Squeeze Theorem) If 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛 for all 𝑛, and

lim 𝑥𝑛 = lim 𝑧𝑛 = 𝐿,

then lim 𝑦𝑛 = 𝐿.

Proof. Let 𝜀 > 0 be given. Since lim 𝑥𝑛 = 𝐿, there exists 𝑛1 ∈ N such that

|𝑥𝑛 − 𝐿 | < 𝜀 for all 𝑛 > 𝑛1.

Similarly, since lim 𝑧𝑛 = 𝐿, there exists 𝑛2 ∈ N such that

|𝑧𝑛 − 𝐿 | < 𝜀 for all 𝑛 > 𝑛2.

Let 𝑛0 = max{𝑛1, 𝑛2}. Then for all 𝑛 > 𝑛0, we have

𝐿 − 𝜀 < 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛 < 𝐿 + 𝜀,

which implies
|𝑦𝑛 − 𝐿 | < 𝜀 for all 𝑛 > 𝑛0.

Since 𝜀 > 0 was arbitrary, it follows that lim 𝑦𝑛 = 𝐿. ⊓⊔

3.3 lim inf 𝒙𝒏 and lim sup 𝒙𝒏

A number 𝑎 ∈ R is an accumulation point of a sequence 𝑥𝑛 if there exists a
subsequence 𝑥𝑛𝑘 such that

lim
𝑘→∞

𝑥𝑛𝑘 = 𝑎.

Theorem 3.33. A number 𝑎 ∈ R is an accumulation point of the sequence 𝑥𝑛 if
and only if

∀𝜀 > 0, there are infinitely many 𝑛 ∈ N such that 𝑥𝑛 ∈ (𝑎 − 𝜀, 𝑎 + 𝜀).

Proof. The forward implication follows directly from the definition. For the
converse, let 𝜀 = 1, 1

2 ,
1
3 , . . . ,

1
𝑘
, . . . . Since there are infinitely many 𝑛 with

𝑥𝑛 ∈ (𝑎 − 1
𝑘
, 𝑎 + 1

𝑘
), we can select indices 𝑛1 < 𝑛2 < · · · < 𝑛𝑘 < . . . such that

|𝑥𝑛𝑘 − 𝑎 | <
1
𝑘

for each 𝑘 ∈ N.

By construction, lim
𝑘→∞

𝑥𝑛𝑘 = 𝑎, so 𝑎 is an accumulation point. ⊓⊔

Example 3.34. If lim 𝑥𝑛 = 𝑎, then 𝑥𝑛 has exactly one accumulation point,
namely 𝑎. This follows directly from Theorem 3.12.
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Example 3.35. Consider the sequence {0, 1, 0, 2, 0, 3, . . . }. It diverges, but has 0
as an accumulation point due to the constant subsequence 𝑥2𝑛−1 = 0. Similarly,
the sequence {1,−1, 1,−1, . . . } has two accumulation points: −1 and 1. The
sequence {1, 2, 3, 4, 5, . . . } is divergent and has no accumulation points.

Example 3.36. By Theorem 2.32, every real number 𝑟 ∈ R is an accumulation
point of some sequence of rational numbers.

We shall see below that every bounded sequence has at least one accumulation
point, and converges if and only if it has a unique accumulation point.

Let 𝑥𝑛 be a bounded sequence, so that 𝑚 ≤ 𝑥𝑛 ≤ 𝑀 for all 𝑛, with 𝑚, 𝑀 ∈ R.
Define the sets

𝑋𝑛 := {𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, . . . }.
Then 𝑋𝑛+1 ⊆ 𝑋𝑛 ⊆ [𝑚, 𝑀] for all 𝑛. Set

𝑎𝑛 := inf 𝑋𝑛, 𝑏𝑛 := sup 𝑋𝑛.

The sequences (𝑎𝑛) and (𝑏𝑛) are monotone and bounded:

𝑚 ≤ 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛 ≤ · · · ≤ 𝑏𝑛 ≤ · · · ≤ 𝑏2 ≤ 𝑏1 ≤ 𝑀,

so their limits exist. Define

lim inf 𝑥𝑛 := lim
𝑛→∞

𝑎𝑛, lim sup 𝑥𝑛 := lim
𝑛→∞

𝑏𝑛.

It is immediate that
lim inf 𝑥𝑛 ≤ lim sup 𝑥𝑛.

Example 3.37. Consider the sequence 𝑥𝑛 = {0, 1, 0, 1, 0, 1, . . . }. Using the
notation above, 𝑎𝑛 ≡ 0 and 𝑏𝑛 ≡ 1, so lim inf 𝑥𝑛 = 0 and lim sup 𝑥𝑛 = 1.

Theorem 3.38. Let 𝑥𝑛 be a bounded sequence. Then lim inf 𝑥𝑛 is the smallest
accumulation point, and lim sup 𝑥𝑛 is the greatest accumulation point.

Proof. We prove the claim for lim inf 𝑥𝑛; the proof for lim sup 𝑥𝑛 is analogous.
Let 𝑎 := lim inf 𝑥𝑛 = lim 𝑎𝑛. Given any 𝜀 > 0, choose 𝑛0 such that 𝑎 − 𝜀 <

𝑎𝑛0 ≤ 𝑎 < 𝑎 + 𝜀. Since 𝑎𝑛0 = inf{𝑥𝑛0 , 𝑥𝑛0+1, . . . }, there exists 𝑛1 ≥ 𝑛0 such that
𝑎 − 𝜀 < 𝑥𝑛1 < 𝑎 + 𝜀. Repeating this process produces a subsequence converging
to 𝑎, so 𝑎 is an accumulation point.

To see minimality, let 𝑐 < 𝑎. Then there exists 𝑛0 such that 𝑐 < 𝑎𝑛0 ≤ 𝑥𝑛 for
all 𝑛 ≥ 𝑛0. Choosing 𝜀 = 𝑎𝑛0 − 𝑐, the interval (𝑐 − 𝜀, 𝑐 + 𝜀) contains no 𝑥𝑛 for
𝑛 > 𝑛0. By Theorem 3.33, 𝑐 is not an accumulation point. ⊓⊔

Example 3.39. ByTheorem 3.38, it follows that the sequence 𝑥𝑛 = sin 𝑛 satisfies
lim inf 𝑥𝑛 = −1 and lim sup 𝑥𝑛 = 1.

Corollary 3.40. (Bolzano–Weierstrass Theorem) Every bounded sequence 𝑥𝑛
has a convergent subsequence.
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Fig. 3.5: 𝑥𝑛 = sin 𝑛

Proof. Since 𝑥𝑛 is bounded, 𝑎 = lim inf 𝑥𝑛 is well defined and is an accumulation
point. Hence, there exists a subsequence converging to 𝑎. ⊓⊔

Corollary 3.41. A sequence 𝑥𝑛 is convergent if and only if lim inf 𝑥𝑛 =

lim sup 𝑥𝑛.

Proof. If 𝑥𝑛 converges, all subsequences converge to the same limit, so
lim inf 𝑥𝑛 = lim sup 𝑥𝑛 = lim 𝑥𝑛. Conversely, suppose 𝑎 = lim inf 𝑥𝑛 =

lim sup 𝑥𝑛. Then for any 𝜀 > 0, there exists 𝑛0 such that 𝑎 − 𝜀 < 𝑥𝑛 < 𝑎 + 𝜀 for
all 𝑛 > 𝑛0, so 𝑥𝑛 → 𝑎. ⊓⊔

Corollary 3.42. If 𝑐 < lim inf 𝑥𝑛, then there exists 𝑛0 ∈ N such that 𝑛 >

𝑛0 =⇒ 𝑐 < 𝑥𝑛. Similarly, if 𝑐 > lim sup 𝑥𝑛, then there exists 𝑛1 ∈ N such that
𝑛 > 𝑛1 =⇒ 𝑐 > 𝑥𝑛.

Proof. We prove the first statement; the second is analogous.
Let 𝑎 = lim inf 𝑥𝑛 be the smallest accumulation point of (𝑥𝑛), and assume

𝑐 < 𝑎. Suppose, for contradiction, that for every 𝑛 ∈ N there exists 𝑚 > 𝑛 with
𝑥𝑚 ≤ 𝑐. Then we can construct a subsequence (𝑥𝑛𝑘 ) with 𝑥𝑛𝑘 ≤ 𝑐 for all 𝑘 .

Since (𝑥𝑛) is bounded, (𝑥𝑛𝑘 ) has a convergent subsequence with limit 𝑏 ≤
𝑐 < 𝑎. But 𝑏 is an accumulation point, contradicting the minimality of 𝑎. ⊓⊔

A sequence 𝑥𝑛 is called a Cauchy sequence if, given 𝜀 > 0, there exists
𝑛0 ∈ N such that for all 𝑛, 𝑚 > 𝑛0,

|𝑥𝑛 − 𝑥𝑚 | < 𝜀.

In other words, a Cauchy sequence is a sequence whose terms 𝑥𝑛 become
arbitrarily close to each other for sufficiently large 𝑛. It is reasonable to expect
that a sequence with this property converges, and indeed this is true, as the
theorem below shows.
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Theorem 3.43. Every Cauchy sequence is convergent.

Proof. The proof follows directly from the two lemmas below.

Lemma 3.44. Every Cauchy sequence is bounded.

Proof. Let (𝑥𝑛) be a Cauchy sequence. By definition, there exists 𝑛0 ∈ N such
that

𝑚, 𝑛 > 𝑛0 =⇒ |𝑥𝑛 − 𝑥𝑚 | < 1.

Fix 𝑥𝑛0 and define

𝑀 := max
{
|𝑥1 |, |𝑥2 |, . . . , |𝑥𝑛0 |, |𝑥𝑛0 − 1|, |𝑥𝑛0 + 1|

}
.

Then for all 𝑛, |𝑥𝑛 | ≤ 𝑀 , and hence the sequence (𝑥𝑛) is bounded. ⊓⊔

Lemma 3.45. If a Cauchy sequence (𝑥𝑛) has a convergent subsequence (𝑥𝑛𝑘 )
with lim

𝑘→∞
𝑥𝑛𝑘 = 𝑎, then (𝑥𝑛) converges to 𝑎.

Proof. Let 𝜀 > 0. Since (𝑥𝑛) is Cauchy, there exists 𝑛0 such that

𝑚, 𝑛 > 𝑛0 =⇒ |𝑥𝑛 − 𝑥𝑚 | <
𝜀

2
.

Since (𝑥𝑛𝑘 ) converges to 𝑎, there exists 𝑘0 such that

𝑛𝑘 > 𝑛𝑘0 =⇒ |𝑥𝑛𝑘 − 𝑎 | <
𝜀

2
.

Choose 𝑛𝑘 > 𝑛0 satisfying this. Then for all 𝑛 > 𝑛0,

|𝑥𝑛 − 𝑎 | ≤ |𝑥𝑛 − 𝑥𝑛𝑘 | + |𝑥𝑛𝑘 − 𝑎 | <
𝜀

2
+ 𝜀

2
= 𝜀.

Hence, lim 𝑥𝑛 = 𝑎. ⊓⊔

By Lemma 3.44 and the Bolzano–Weierstrass Theorem, every Cauchy se-
quence has a convergent subsequence. Therefore, by Lemma 3.45, the sequence
converges. This completes the proof of Theorem 3.43. ⊓⊔

The converse of Theorem 3.43 is also true:

Theorem 3.46. Every convergent sequence is a Cauchy sequence.

Proof. Suppose 𝑎 := lim 𝑥𝑛. Given 𝜀 > 0, there exist 𝑛0, 𝑛1 ∈ N such that

𝑛 > 𝑛0 =⇒ |𝑥𝑛 − 𝑎 | <
𝜀

2
, 𝑚 > 𝑛1 =⇒ |𝑥𝑚 − 𝑎 | < 𝜀

2
.

Then, for 𝑚, 𝑛 > max{𝑛0, 𝑛1},

|𝑥𝑛 − 𝑥𝑚 | ≤ |𝑥𝑛 − 𝑎 | + |𝑥𝑚 − 𝑎 | < 𝜀.
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Hence, 𝑥𝑛 is Cauchy. ⊓⊔

Corollary 3.47. A sequence 𝑥𝑛 of real numbers is a Cauchy sequence if and
only if it converges.

A divergent sequence 𝑥𝑛 converges to infinity, denoted by lim 𝑥𝑛 = +∞, if for
any 𝑀 > 0, there exists 𝑛0 ∈ N such that 𝑛 > 𝑛0 =⇒ 𝑥𝑛 > 𝑀 . Similarly, 𝑥𝑛
converges to negative infinity, denoted by lim 𝑥𝑛 = −∞, if for any 𝑀 > 0, there
exists 𝑛0 ∈ N such that 𝑛 > 𝑛0 =⇒ 𝑥𝑛 < −𝑀 .

Example 3.48. The sequence 𝑥𝑛 = 𝑛 converges to infinity. Given any 𝑀 > 0,
take 𝑛0 > 𝑀 . Then 𝑥𝑛 = 𝑛 > 𝑀 for all 𝑛 > 𝑛0. On the other hand, 𝑥𝑛 = (−1)𝑛𝑛
is divergent and does not converge to +∞ or −∞, since it is unbounded in both
directions.

The following Theorem is similar to Theorem 3.25. The proof will be omitted.

Theorem 3.49. (Arithmetic operations with infinite limits)

1. If lim 𝑥𝑛 = +∞ and 𝑦𝑛 is bounded from below, then lim(𝑥𝑛 + 𝑦𝑛) = +∞ and
lim(𝑥𝑛 · 𝑦𝑛) = +∞.

2. If 𝑥𝑛 > 0, then lim 𝑥𝑛 = 0 if and only if lim 1
𝑥𝑛

= +∞.
3. Let 𝑥𝑛, 𝑦𝑛 > 0 be positive sequences. Then:

(a) If 𝑥𝑛 is bounded from below and lim 𝑦𝑛 = 0, then lim 𝑥𝑛
𝑦𝑛

= +∞.
(b) If 𝑥𝑛 is bounded and lim 𝑦𝑛 = +∞, then lim 𝑥𝑛

𝑦𝑛
= 0.

Fig. 3.6: 𝑥𝑛 =
√
𝑛 + 1 −

√
𝑛

Example 3.50. Let 𝑥𝑛 =
√
𝑛 + 1 and 𝑦𝑛 = −

√
𝑛. Then lim 𝑥𝑛 = +∞, lim 𝑦𝑛 =

−∞. We have

lim(𝑥𝑛 + 𝑦𝑛) = lim
(
√
𝑛 + 1 −

√
𝑛) (

√
𝑛 + 1 +

√
𝑛)

√
𝑛 + 1 +

√
𝑛

= lim
1

√
𝑛 + 1 +

√
𝑛
= 0.
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However, it is not true in general that lim(𝑥𝑛 + 𝑦𝑛) = lim 𝑥𝑛 + lim 𝑦𝑛 if both
limits are infinite. For example, 𝑥𝑛 = 𝑛2 and 𝑦𝑛 = −𝑛 satisfy lim 𝑥𝑛 = +∞,
lim 𝑦𝑛 = −∞, but lim(𝑥𝑛 + 𝑦𝑛) = +∞.
Example 3.51. Let 𝑥𝑛 = [2 + (−1)𝑛]𝑛 and 𝑦𝑛 = 𝑛. Then lim 𝑥𝑛 = lim 𝑦𝑛 = +∞,
but lim 𝑥𝑛

𝑦𝑛
= lim[2 + (−1)𝑛] does not exist. Hence, it is not true in general that

lim 𝑥𝑛
𝑦𝑛

= 1 if both limits are +∞.

Fig. 3.7: 𝑥𝑛 = [2 + (−1)𝑛]𝑛

Example 3.52. Let 𝑎 > 1. Then lim 𝑎𝑛

𝑛
= +∞. Indeed, write 𝑎 = 1 + 𝑠 with

𝑠 > 0. Then 𝑎𝑛 = (1 + 𝑠)𝑛 ≥ 1 + 𝑛𝑠 + 𝑛(𝑛−1)
2 𝑠2 for 𝑛 ≥ 2, and

lim
1 + 𝑛𝑠 + 𝑛(𝑛−1)

2 𝑠2

𝑛
= +∞.

By induction, one can show that for any 𝑚 ∈ N, lim 𝑎𝑛

𝑛𝑚
= +∞.

Fig. 3.8: 𝑥𝑛 =
√
𝑛 + 1 −

√
𝑛

Example 3.53. Let 𝑎 > 0. Then lim 𝑛!
𝑎𝑛 = +∞. Indeed, pick 𝑛0 ∈ N such that

𝑛0
𝑎
> 2. Then
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𝑛!
𝑎𝑛

=
𝑛(𝑛 − 1) · · · (𝑛0 + 1) 𝑛0!

𝑎𝑛0 𝑎 · · · 𝑎︸ ︷︷ ︸
𝑛−𝑛0

>
𝑛0!
𝑎𝑛0

2 𝑛−𝑛0 ,

and it follows that lim 𝑛!
𝑎𝑛 = +∞.

3.4 Series

Given a sequence of real numbers (𝑥𝑛), the purpose of this section is to give
meaning to expressions of the form

𝑥1 + 𝑥2 + 𝑥3 + · · · ,

that is, the formal sum of all the terms of the sequence (𝑥𝑛).
A natural way to do this is to define the sequence of partial sums

𝑠𝑛 := 𝑥1 + 𝑥2 + · · · + 𝑥𝑛,

and then set
∞∑︁
𝑛=1

𝑥𝑛 := lim
𝑛→∞

𝑠𝑛,

whenever this limit exists.
It is common practice to write simply

∑
𝑥𝑛 instead of

∑∞
𝑛=1 𝑥𝑛, and to call 𝑥𝑛

the general term of the series. We shall adopt these conventions in this book.
Since the definition of

∑
𝑥𝑛 involves a limit, the series may or may not

converge. If ∑︁
𝑥𝑛 = 𝐿 ∈ R,

we say that the series
∑
𝑥𝑛 converges to 𝐿. Otherwise, we say that

∑
𝑥𝑛 diverges.

Theorem 3.54. If the series
∑
𝑥𝑛 converges, then lim 𝑥𝑛 = 0.

Proof. Indeed, since 𝑥𝑛 = 𝑠𝑛 − 𝑠𝑛−1, we obtain

lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

(𝑠𝑛 − 𝑠𝑛−1) = lim
𝑛→∞

𝑠𝑛 − lim
𝑛→∞

𝑠𝑛−1 = 0.

⊓⊔

The converse of the theorem above is not true, as the following counterexam-
ple shows.

Example 3.55. (Harmonic series) Consider the series
∑ 1

𝑛
. We clearly have

lim 1
𝑛
= 0. However, we claim that

∑ 1
𝑛

diverges.
To prove that lim 𝑠𝑛 diverges, it suffices to exhibit a divergent subsequence of

𝑠𝑛. Consider the subsequence 𝑠2𝑛 :
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𝑠2𝑛 = 1 + 1
2
+ · · · + 1

2𝑛

= 1 + 1
2
+

(
1
3
+ 1

4

)
+

(
1
5
+ 1

6
+ 1

7
+ 1

8

)
+ · · ·

> 1 + 1
2
+ 2

4
+ 4

8
+ 8

16
+ · · · + 2 𝑛−1

2𝑛

= 1 + 𝑛 · 1
2
.

Hence, 𝑠2𝑛 > 1 + 𝑛
2 , and therefore lim 𝑠2𝑛 = +∞. Thus the harmonic series

diverges.

Example 3.56. (Geometric series) Consider the series
∑
𝑎𝑛 with 𝑎 ∈ R.

If |𝑎 | ≥ 1, then the general term 𝑥𝑛 = 𝑎𝑛 does not satisfy lim 𝑥𝑛 = 0, so the
series diverges.

If |𝑎 | < 1, then the series converges. Indeed, by induction one shows

𝑠𝑛 =
1 − 𝑎𝑛+1

1 − 𝑎 .

Taking the limit as 𝑛→ ∞ gives

∞∑︁
𝑛=0

𝑎𝑛 = lim
𝑛→∞

𝑠𝑛 =
1

1 − 𝑎 , ( |𝑎 | < 1).

Theorem 3.57. Let 𝑎𝑛 and 𝑏𝑛 be real sequences and consider the series
∑
𝑎𝑛

and
∑
𝑏𝑛. Then:

1. If
∑
𝑎𝑛 and

∑
𝑏𝑛 converge, then

∑(𝑎𝑛 + 𝑏𝑛) converges and

∞∑︁
𝑛=1

(𝑎𝑛 + 𝑏𝑛) =
∞∑︁
𝑛=1

𝑎𝑛 +
∞∑︁
𝑛=1

𝑏𝑛.

2. For any 𝑐 ∈ R, if
∑
𝑎𝑛 converges then

∑(𝑐 𝑎𝑛) converges and

∞∑︁
𝑛=1

𝑐 𝑎𝑛 = 𝑐

∞∑︁
𝑛=1

𝑎𝑛.

Proof. The proof follows directly from the properties of limits as shown below.
(1) Let 𝑆𝑛 =

∑𝑛
𝑘=1 𝑎𝑘 and 𝑇𝑛 =

∑𝑛
𝑘=1 𝑏𝑘 be the partial sums of the two series,

and suppose 𝑆𝑛 → 𝑆 and 𝑇𝑛 → 𝑇 . The 𝑛th partial sum of
∑(𝑎𝑛 + 𝑏𝑛) is 𝑆𝑛 +𝑇𝑛,

hence
lim
𝑛→∞

(𝑆𝑛 + 𝑇𝑛) = lim
𝑛→∞

𝑆𝑛 + lim
𝑛→∞

𝑇𝑛 = 𝑆 + 𝑇,

so
∑(𝑎𝑛 + 𝑏𝑛) converges to 𝑆 + 𝑇 .
(2) If 𝑆𝑛 =

∑𝑛
𝑘=1 𝑎𝑘 → 𝑆, then the 𝑛th partial sum of

∑
𝑐 𝑎𝑛 is 𝑐𝑆𝑛, and
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lim
𝑛→∞

𝑐𝑆𝑛 = 𝑐 lim
𝑛→∞

𝑆𝑛 = 𝑐𝑆,

so
∑
𝑐 𝑎𝑛 converges to 𝑐𝑆. ⊓⊔

Example 3.58. (Telescoping series) Consider the series
∞∑︁
𝑛=1

1
𝑛(𝑛 + 1) . Since

1
𝑛(𝑛 + 1) =

1
𝑛
− 1
𝑛 + 1

,

the 𝑛th partial sum is

𝑠𝑛 =

𝑛∑︁
𝑘=1

( 1
𝑘
− 1
𝑘 + 1

)
= 1 − 1

𝑛 + 1
.

Hence
∞∑︁
𝑛=1

1
𝑛(𝑛 + 1) = lim

𝑛→∞
𝑠𝑛 = 1.

Example 3.59. The series
∞∑︁
𝑛=1

(−1)𝑛 is divergent. Indeed, the general term (−1)𝑛

does not tend to 0 (it has two accumulation points, 1 and −1), and by Theorem
3.54 a necessary condition for convergence is that the terms tend to 0. Therefore
the series cannot converge.

Theorem 3.60. Let 𝑎𝑛 be a sequence of nonnegative real numbers, 𝑎𝑛 ≥ 0 for

all 𝑛. The series
∞∑︁
𝑛=1

𝑎𝑛 converges if and only if the sequence of partial sums 𝑠𝑛

is bounded.

Proof. Let 𝑠𝑛 =
∑𝑛

𝑘=1 𝑎𝑘 be the partial sums. Observe that 𝑠𝑛 is monotone
nondecreasing because each 𝑎𝑛 ≥ 0 implies 𝑠𝑛+1 − 𝑠𝑛 = 𝑎𝑛+1 ≥ 0.

If
∑
𝑎𝑛 converges, then by definition 𝑠𝑛 has a finite limit and is therefore

bounded.
Conversely, if (𝑠𝑛) is bounded and monotone nondecreasing, then by the

Monotone Convergence Theorem it converges. Thus
∑
𝑎𝑛 = lim𝑛→∞ 𝑠𝑛 exists

and is finite. ⊓⊔

Corollary 3.61. (Comparison principle) Suppose
∑
𝑎𝑛 and

∑
𝑏𝑛 are series of

nonnegative real numbers, i.e. 𝑎𝑛, 𝑏𝑛 ≥ 0. If there are 𝑐 ∈ R and 𝑛0 ∈ N such
that 𝑎𝑛 ≤ 𝑐 𝑏𝑛 for 𝑛 > 𝑛0, then if

∑
𝑏𝑛 converges,

∑
𝑎𝑛 converges. Moreover, if∑

𝑎𝑛 diverges then
∑
𝑏𝑛 diverges.

Example 3.62. If 𝑟 > 1, the series
∑ 1

𝑛𝑟
converges. Indeed, the general term of

this series is positive, so the partial sums 𝑠𝑛 are increasing, hence it’s enough
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to prove that a subsequence of 𝑠𝑛 is bounded. We claim 𝑠2𝑛−1 is bounded. We
have:

𝑠2𝑛−1 = 1 + 1
2𝑟

+ . . . + 1
(2𝑛 − 1)𝑟

= 1 +
(

1
2𝑟

+ 1
3𝑟

)
+

(
1
4𝑟

+ 1
5𝑟

+ 1
6𝑟

+ 1
7𝑟

)
+ . . . + 1

(2𝑛 − 1)𝑟

< 1 + 2
2𝑟

+ 4
4𝑟

+ 8
8𝑟

+ . . . + 2𝑛−1

2(𝑛−1)𝑟

=

𝑛−1∑︁
𝑗=0

(
2
2𝑟

) 𝑗

On the other hand, the geometric series
∞∑
𝑗=0

(
2

2𝑟

) 𝑗
converges since 2

2𝑟 < 1. We

conclude that 𝑠2𝑛−1 is bounded and the claim follows.

Example 3.63. (p-series) Let 𝑝 > 1. We claim that the series
∞∑
𝑛=1

1
𝑛𝑝 converges.

Let 𝑠𝑘 denotes its partial sum, i.e. 𝑠𝑘 =
𝑘∑

𝑛=1

1
𝑛𝑝 . Since 𝑠𝑘 is increasing, in order

to prove its convergence, it’s enough to prove that it is bounded as well. Take
𝑘 = 2𝑚 − 1, then

𝑠𝑘 = 1 +
(

1
2𝑝

+ 1
3𝑝

)
+ . . . + 1

(2𝑚 − 1) 𝑝

< 1 + 2
2𝑝

+ 4
4𝑝

+ . . . + 2𝑚−1

2(𝑚−1) 𝑝 =

𝑚−1∑︁
𝑖=0

(
2

2𝑝

) 𝑖
.

Since 𝑝 > 1, it follows that 2
2𝑝 < 1 and the geometric series

𝑚−1∑
𝑖=0

(
2

2𝑝

) 𝑖
converges.

Hence, 𝑠𝑘 is bounded, as desired.

Corollary 3.64. (Cauchy’s criteria) The series
∑
𝑎𝑛 is convergent if and only

if given 𝜖 > 0, there is 𝑛0 ∈ N such that |𝑎𝑛+1 + . . . + 𝑎𝑛+𝑝 | < 𝜖 for 𝑛 > 𝑛0.

Proof. Notice that 𝑠𝑛 converges if and only if it is a Cauchy sequence (see
Corollary 3.47). ⊓⊔

A series
∑
𝑎𝑛 is absolutely convergent if

∑ |𝑎𝑛 | is convergent. A series with
all of its terms positive (or negative) is convergent if and only if is absolutely
convergent. Hence, in this case the two notion coincide. Here’s a classical
counterexample that shows that they don’t coincide in general:
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Example 3.65. Consider the series
∑ (−1)𝑛

𝑛
. We already know that

∑ 1
𝑛

diverges,
however we claim that

∑ (−1)𝑛
𝑛

converges. Indeed, notice that the subsequence
𝑠2𝑛 satisfies

𝑠2 < 𝑠4 < 𝑠6 < . . . < 𝑠2𝑛,

and is a Cauchy sequence, hence convergent. Whereas 𝑠2𝑛−1 satisfies

𝑠1 > 𝑠3 > 𝑠5 > . . . > 𝑠2𝑛−1,

so it’s bounded and monotone, hence convergent as well. Set 𝑎 := lim 𝑠2𝑛, 𝑏 :=
lim 𝑠2𝑛−1, then since 𝑠2𝑛 − 𝑠2𝑛−1 = 1

2𝑛 → 0, we necessarily have 𝑎 = 𝑏. We
conclude that 𝑠𝑛 has only one accumulation point, hence converges. (We will
see later that 𝑎 = 𝑏 = log 2)

A series
∑
𝑎𝑛 is conditionally convergent if

∑
𝑎𝑛 is convergent but

∑ |𝑎𝑛 |
is divergent. The example above shows that

∑ (−1)𝑛
𝑛

is conditionally convergent.
Theorem 3.66. Every absolutely convergent series

∑
𝑎𝑛 is convergent.

Proof. By hypothesis,
∑
𝑎𝑛 is Cauchy, so we can find 𝑛0 ∈ N such that 𝑛 >

𝑛0,∀𝑝 ∈ N ⇒ |𝑎𝑛+1 | + . . . + |𝑎𝑛+𝑝 | < 𝜖 . In particular, |𝑎𝑛+1 + . . . + 𝑎𝑛+𝑝 | <
|𝑎𝑛+1 |+. . .+|𝑎𝑛+𝑝 | < 𝜖 , the conclusion follows from Cauchy’s criteria (Corollary
3.64). ⊓⊔
Corollary 3.67. Let

∑
𝑏𝑛 a convergent series with 𝑏𝑛 ≥ 0. If there are 𝑛0 ∈ N

and 𝑐 ∈ R such that 𝑛 > 𝑛0 ⇒ |𝑎𝑛 | ≤ 𝑐 𝑏𝑛 then the series
∑
𝑎𝑛 is absolutely

convergent.
Corollary 3.68. (The root test) If there are 𝑛0 ∈ N and 𝑐 ∈ R such that
𝑛 > 𝑛0 ⇒ 𝑛

√︁
|𝑎𝑛 | ≤ 𝑐 < 1, then the series

∑
𝑎𝑛 is absolutely convergent. In

other words, if lim sup 𝑛
√︁
|𝑎𝑛 | < 1 then

∑
𝑎𝑛 is absolutely convergent. On the

other hand, if lim sup 𝑛
√︁
|𝑎𝑛 | > 1, then

∑
𝑎𝑛 diverges.

Proof. In this case, we can compare
∑ |𝑎𝑛 | with

∑
𝑐𝑛, the latter (absolutely)

converges since it’s a geometric series with 0 < 𝑐 < 1. If 𝑛
√︁
|𝑎𝑛 | > 1 for 𝑛

sufficiently large, then lim 𝑎𝑛 ≠ 0. ⊓⊔

Corollary 3.69. (The root test – second version) If lim 𝑛
√︁
|𝑎𝑛 | < 1, then the

series
∑
𝑎𝑛 is absolutely convergent. If lim 𝑛

√︁
|𝑎𝑛 | > 1, then the series

∑
𝑎𝑛 is

divergent.
Example 3.70. Let 𝑎 ∈ R and consider the series

∑
𝑛𝑎𝑛. Notice that

lim 𝑛
√︁
𝑛 |𝑎 |𝑛 = lim 𝑛

√
𝑛 lim |𝑎 | = |𝑎 |. Hence, if |𝑎 | < 1 the series

∑
𝑛𝑎𝑛 is abso-

lutely convergent and if |𝑎 | > 1 it diverges. If |𝑎 | = 1 the series also diverges,
since lim 𝑛𝑎𝑛 ≠ 0 in this case.
Theorem 3.71. (The ratio test) Let

∑
𝑎𝑛 and

∑
𝑏𝑛 be series of real numbers

such that 𝑎𝑛 ≠ 0, 𝑏𝑛 > 0,∀𝑛 ∈ N and
∑
𝑏𝑛 convergent. If there is 𝑛0 ∈ N such

that 𝑛 > 𝑛0 ⇒
��� 𝑎𝑛+1
𝑎𝑛

��� ≤ ���𝑏𝑛+1
𝑏𝑛

���, then
∑
𝑎𝑛 is absolutely convergent.
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Proof. Consider the inequalities:����𝑎𝑛0+2

𝑎𝑛0+1

���� ≤ ����𝑏𝑛0+2

𝑏𝑛0+1

��������𝑎𝑛0+3

𝑎𝑛0+2

���� ≤ ����𝑏𝑛0+3

𝑏𝑛0+2

����
. . .���� 𝑎𝑛𝑎𝑛−1

���� ≤ ���� 𝑏𝑛𝑏𝑛−1

����
Multiplying them together, we have:���� 𝑎𝑛𝑎𝑛0+1

���� ≤ ���� 𝑏𝑛𝑏𝑛0+1

����
Hence, |𝑎𝑛 | ≤ 𝑐 𝑏𝑛 and the result follows by the comparison principle. ⊓⊔

Corollary 3.72. (The ratio test – second version) If lim sup
��� 𝑎𝑛+1
𝑎𝑛

��� < 1, then the

series
∑
𝑎𝑛 is absolutely convergent. If lim sup

��� 𝑎𝑛+1
𝑎𝑛

��� > 1, then the series
∑
𝑎𝑛

is divergent.

Proof. For the convergence, take 𝑏𝑛 = (lim sup
��� 𝑎𝑛+1
𝑎𝑛

���)𝑛 in Theorem 3.71. If

lim sup
��� 𝑎𝑛+1
𝑎𝑛

��� > 1 then lim 𝑎𝑛 ≠ 0. ⊓⊔

Corollary 3.73. (The ratio test – third version) If lim
��� 𝑎𝑛+1
𝑎𝑛

��� < 1 then
∑
𝑎𝑛 is

absolutely convergent, if lim
��� 𝑎𝑛+1
𝑎𝑛

��� > 1 then
∑
𝑎𝑛 diverges.

Example 3.74. Fix 𝑥 ∈ R and consider the series
∑ 𝑥𝑛

𝑛! , then
��� 𝑎𝑛+1
𝑎𝑛

��� = |𝑥 |
𝑛+1 → 0

regardless of 𝑥, and the series is absolutely convergent. We will see later that
this series coincides with 𝑒𝑥 .

Theorem 3.75. (Root test is stronger than the ratio test) For any bounded
sequence 𝑎𝑛 of positive numbers we have

lim inf
𝑎𝑛+1

𝑎𝑛
≤ lim inf 𝑛

√
𝑎𝑛 ≤ lim sup 𝑛

√
𝑎𝑛 ≤ lim sup

𝑎𝑛+1

𝑎𝑛
,

In particular, if lim 𝑎𝑛+1
𝑎𝑛

= 𝑐 then lim 𝑛
√
𝑎𝑛 = 𝑐.

Proof. It’s enough to prove that lim sup 𝑛
√
𝑎𝑛 ≤ lim sup 𝑎𝑛+1

𝑎𝑛
, the first inequality

can be proven mutatis mutandis. We argue by contradiction, suppose there is a
𝑘 ∈ R such that
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lim sup 𝑛
√
𝑎𝑛 > 𝑘 > lim sup

𝑎𝑛+1

𝑎𝑛

Proceeding as in the proof of Theorem 3.71, we can find 𝑛0 ∈ N such that
𝑛 > 𝑛0 ⇒ 𝑎𝑛 < 𝑐 𝑘

𝑛, which implies that 𝑛
√
𝑎𝑛 < 𝑐

1
𝑛 𝑘 and hence:

lim sup 𝑛
√
𝑎𝑛 ≤ 𝑘

a contradiction. ⊓⊔

Example 3.76. A nice application of the Theorem above is the computation
of lim 𝑛

𝑛√
𝑛!

. Set 𝑥𝑛 = 𝑛
𝑛√
𝑛!

and 𝑦𝑛 = 𝑛𝑛

𝑛! , then 𝑥𝑛 = 𝑛
√
𝑦𝑛. On the other hand,

𝑦𝑛+1
𝑦𝑛

= (1 + 1
𝑛
)𝑛, hence lim 𝑦𝑛+1

𝑦𝑛
= 𝑒, and it follows that lim 𝑛

𝑛√
𝑛!

= 𝑒.

Example 3.77. Given two distinct numbers 𝑎, 𝑏 ∈ R, consider the sequence
𝑥𝑛 = {𝑎, 𝑎𝑏, 𝑎2𝑏, 𝑎2𝑏2, 𝑎3𝑏2, . . .}, then the ratio 𝑥𝑛+1

𝑥𝑛
= 𝑏 if 𝑛 is odd, and

𝑥𝑛+1
𝑥𝑛

= 𝑎 if 𝑛 is even, hence the sequence 𝑥𝑛+1
𝑥𝑛

doesn’t converge and lim 𝑥𝑛+1
𝑥𝑛

doesn’t exist. On the other hand, we have lim 𝑛
√
𝑥𝑛 =

√
𝑎𝑏. This demonstrates

that in the Theorem above the inequalities can be strict.

Theorem 3.78. (Dirichlet) Let 𝑏𝑛 be a nonincreasing sequence of positive
numbers with lim 𝑏𝑛 = 0, and

∑
𝑎𝑛 be a series such that the partial sum 𝑠𝑛 is a

bounded sequence. Then the series
∑
𝑎𝑛𝑏𝑛 converges.

Proof. Notice that

𝑎1𝑏1 + 𝑎2𝑏2 + . . . + 𝑎𝑛𝑏𝑛 = 𝑎1(𝑏1 − 𝑏2) + (𝑎1 + 𝑎2) (𝑏2 − 𝑏3)+
+ (𝑎1 + 𝑎2 + 𝑎3) (𝑏3 − 𝑏4) + . . . + (𝑎1 + . . . + 𝑎𝑛)𝑏𝑛

=

𝑛∑︁
𝑖=2

𝑠𝑖−1(𝑏𝑖−1 − 𝑏𝑖) + 𝑠𝑛𝑏𝑛

Since 𝑠𝑛 is bounded, say |𝑠𝑛 | ≤ 𝑘 and 𝑏𝑛 → 0, we have lim 𝑠𝑛𝑏𝑛 = 0. Moreover,
|∑𝑛

𝑖=2 𝑠𝑖−1(𝑏𝑖−1 − 𝑏𝑖) | ≤ 𝑘 |∑𝑛
𝑖=2(𝑏𝑖−1 − 𝑏𝑖) | = 𝑘 (𝑏1 − 𝑏𝑛). So

∑𝑛
𝑖=2 𝑠𝑖−1(𝑏𝑖−1 −

𝑏𝑖) converges, and therefore, by comparison,
∑
𝑎𝑛𝑏𝑛 converges as well. ⊓⊔

We can weaken the hypothesis lim 𝑏𝑛 = 0 if we take
∑
𝑎𝑛 convergent. Indeed,

if lim 𝑏𝑛 = 𝑐 just take 𝑏∗𝑛 := 𝑏𝑛 − 𝑐 and use this new sequence instead. We
conclude:

Corollary 3.79. (Abel) If
∑
𝑎𝑛 is convergent and 𝑏𝑛 is a nonincreasing sequence

of positive numbers then
∑
𝑎𝑛𝑏𝑛 converges.

Corollary 3.80. (Leibniz) Let 𝑏𝑛 be a nonincreasing sequence of positive num-
bers with lim 𝑏𝑛 = 0. Then the series

∑(−1)𝑛𝑏𝑛 converges.

Proof. In this case, 𝑎𝑛 = (−1)𝑛 has bounded partial sum, namely |𝑠𝑛 | ≤ 1, and
the result follows directly from Theorem 3.78. ⊓⊔
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Example 3.81. Some periodic real valued functions can be written as a linear
combination of

∑
cos(𝑛𝑥) and

∑
sin(𝑛𝑥). The properties of such functions and

generalizations are addressed in area of mathematics called Fourier Analysis.
E. Stein’s book on the subject is a wonderful first-read of the topic.

Take the example of 𝑓 (𝑥) =
∑ cos(𝑛𝑥 )

𝑛
, we claim that if 𝑥 ≠ 2𝜋𝑘, 𝑘 ∈ Z

then 𝑓 (𝑥) is well-defined, i.e.
∑ cos(𝑛𝑥 )

𝑛
converges. Indeed, let 𝑎𝑛 = cos(𝑛𝑥) and

𝑏𝑛 = 1
𝑛
, then 𝑏𝑛 is decreasing, so by Theorem 3.78, it’s enough to prove that the

partial sums 𝑠𝑛 of
∑
𝑎𝑛 are bounded. In other words, we need to show that

𝑠𝑛 = cos(𝑥) + cos(2𝑥) + cos(3𝑥) + . . . + cos(𝑛𝑥)

is bounded. Recall, that 𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥). Therefore:

1 + 𝑠𝑛 = Re[1 + 𝑒𝑖𝑥 + 𝑒2𝑖𝑥 + 𝑒3𝑖𝑥 + . . . + 𝑒𝑛𝑖𝑥]

1 + 𝑠𝑛 = Re[1 − 𝑒 (𝑛+1)𝑖𝑥

1 − 𝑒𝑖𝑥 ]

1 + 𝑠𝑛 ≤ 2
|1 − 𝑒𝑖𝑥 |

It follows that 𝑠𝑛 is bounded and we conclude that
∑ cos(𝑛𝑥 )

𝑛
converges if 𝑥 ≠

2𝜋𝑘 .
Given a series

∑
𝑎𝑛, we define the positive part of

∑
𝑎𝑛 as the series

∑
𝑝𝑛,

where 𝑝𝑛 = 𝑎𝑛 if 𝑎𝑛 > 0, and 𝑝𝑛 = 0 if 𝑎𝑛 ≤ 0. Similarly, the negative
part of

∑
𝑎𝑛 as the series

∑
𝑞𝑛, where 𝑞𝑛 = −𝑎𝑛 if 𝑎𝑛 < 0, and 𝑞𝑛 = 0

if 𝑎𝑛 ≥ 0. It follows immediately from the definition that 𝑝𝑛, 𝑞𝑛 ≥ 0 and
𝑎𝑛 = 𝑝𝑛 − 𝑞𝑛, |𝑎𝑛 | = 𝑝𝑛 + 𝑞𝑛 ∀𝑛 ∈ N.
Proposition 3.82. The series

∑
𝑎𝑛 is absolutely convergent if and only if

∑
𝑝𝑛

and
∑
𝑞𝑛 converge.

Proof. Notice that 𝑝𝑛 ≤ |𝑎𝑛 | and 𝑞𝑛 ≤ |𝑎𝑛 |, hence if
∑ |𝑎𝑛 | converge then by

comparison
∑
𝑝𝑛 and

∑
𝑞𝑛 also converge. The converse is obvious. ⊓⊔

Example 3.83. If
∑
𝑎𝑛 is not absolutely convergent, then the proposition is false.

Take the example of
∑ (−1)𝑛

𝑛
. In this case,

∑
𝑝𝑛 =

∑ 1
2𝑛 and

∑
𝑞𝑛 =

∑ 1
2𝑛−1 ,

and both diverge.
Proposition 3.84. If

∑
𝑎𝑛 is conditionally convergent then

∑
𝑝𝑛 and

∑
𝑞𝑛

diverge.

Proof. Suppose not, say
∑
𝑞𝑛 converge. Then

∑ |𝑎𝑛 | =
∑
𝑝𝑛 +

∑
𝑞𝑛 =

∑
𝑎𝑛 +

2
∑
𝑞𝑛 also converges, a contradiction. ⊓⊔

Let 𝑓 : N → N be a bĳection and
∑
𝑎𝑛 be a series of real numbers. Set

𝑏𝑛 = 𝑎 𝑓 (𝑛) . We say
∑
𝑎𝑛 is commutatively convergent if

∑
𝑎𝑛 =

∑
𝑏𝑛 for

every bĳection 𝑓 : N→ N. We will show below that the notion of commutative
convergence coincides with absolute convergence.
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Theorem 3.85. A series
∑
𝑎𝑛 is absolutely convergent if and only if is commu-

tatively convergent.

Proof. Suppose
∑
𝑎𝑛 absolutely convergent, and let 𝑏𝑛 = 𝑎 𝑓 (𝑛) for some bĳec-

tion 𝑓 : N→ N. It’s enough to assume that 𝑎𝑛 ≥ 0, otherwise just use the fact
that 𝑎𝑛 = 𝑝𝑛 − 𝑞𝑛, for 𝑝𝑛, 𝑞𝑛 ≥ 0, and apply the result for 𝑝𝑛 and 𝑞𝑛. Now,
fix 𝑛 ∈ N and let 𝑠𝑛 =

𝑛∑
𝑖=1
𝑎𝑖 denote the partial sum of

∑
𝑎𝑛, and 𝑡𝑛 =

𝑛∑
𝑖=1
𝑏𝑖 ,

the partial sum of
∑
𝑏𝑛. If we set 𝑚 := max{ 𝑓 (𝑥); 1 ≤ 𝑥 ≤ 𝑛}, it follows that

𝑡𝑛 =
𝑛∑
𝑖=1
𝑎 𝑓 (𝑖) ≤

𝑚∑
𝑖=1
𝑎𝑖 = 𝑠𝑚. We conclude that for each 𝑛 ∈ N it’s possible

to find 𝑚 ∈ N such that 𝑡𝑛 ≤ 𝑠𝑚, and similarly using 𝑓 −1(𝑦) instead of 𝑓 (𝑥),
given 𝑚 ∈ N it’s possible to find 𝑛 ∈ N, such that 𝑠𝑚 ≤ 𝑡𝑛, which implies
lim 𝑠𝑛 = lim 𝑡𝑛, hence

∑
𝑎𝑛 =

∑
𝑏𝑛.

Conversely, we want to show that if
∑
𝑎𝑛 is commutatively convergent then it

is absolutely convergent. We prove the contra-positive, that is, suppose
∑
𝑎𝑛 is

not absolutely convergent then
∑
𝑎𝑛 is not commutatively convergent. Indeed,

if
∑
𝑎𝑛 is divergent, just take 𝑏𝑛 = 𝑎𝑛. Otherwise,

∑
𝑎𝑛 is conditionally conver-

gent, say
∑
𝑎𝑛 = 𝑆 ∈ R, and by proposition 3.84, both

∑
𝑝𝑛 and

∑
𝑞𝑛 diverge.

Moreover, since lim 𝑎𝑛 = 0, we have lim 𝑝𝑛 = lim 𝑞𝑛 = 0. Take any number
𝑐 ≠ 𝑆, we will show that we can reorder 𝑎𝑛 into 𝑏𝑛 in such a way that

∑
𝑏𝑛 = 𝑐,

hence
∑
𝑎𝑛 can’t be commutatively convergent. Let 𝑛1 be the smallest natural

such that
𝑝1 + 𝑝2 + . . . + 𝑝𝑛1 > 𝑐,

and 𝑛2 > 𝑛1, be smallest number such that

𝑝1 + . . . + 𝑝𝑛1 − 𝑞1 − 𝑞2 − . . . − 𝑞𝑛2 < 𝑐.

Proceeding by induction, we obtain a new series
∑
𝑏𝑛, such that the partial sums

𝑡𝑛 approach 𝑐. Indeed, for odd 𝑖 we have 𝑡𝑛𝑖 − 𝑐 ≤ 𝑝𝑛𝑖 , be definition of 𝑛𝑖 , and
similarly, 𝑐 − 𝑡𝑛𝑖+1 ≤ 𝑞𝑛𝑖+1 . Since lim 𝑝𝑛 = lim 𝑞𝑛 = 0, we have lim 𝑡𝑛𝑖 = 𝑐. A
similar argument holds for 𝑖 even. ⊓⊔
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Exercises

1. If lim 𝑥𝑛 = 𝑎, show that lim |𝑥𝑛 | = |𝑎 |. Show that the converse can be false
by giving a counter example.

2. Suppose lim 𝑥𝑛 = 0. Let 𝑦𝑛 = min{|𝑥1 |, |𝑥2 |, . . . , |𝑥𝑛 |}. Show that lim 𝑦𝑛 =

0.
3. If lim 𝑥2𝑛 = 𝑎 and lim 𝑥2𝑛−1 = 𝑎, show that lim 𝑥𝑛 = 𝑎.
4. Given an example of a sequence 𝑥𝑛 and a infinite decomposition of N =

N1 ∪ . . . ∪ N𝑘 ∪ . . ., such that for every 𝑘 ∈ N, the subsequence (𝑥𝑛)𝑛∈N𝑘

has limit 𝑎 ∈ R but lim 𝑥𝑛 ≠ 𝑎.
5. If lim 𝑥𝑛 = 𝑎 and lim(𝑥𝑛 − 𝑦𝑛) = 0, show that lim 𝑦𝑛 = 𝑎.
6. Show that (1− 1

𝑛
)𝑛 is increasing. Hint: Use the inequality of arithmetic and

geometric means involving the 𝑛 + 1 numbers 1 − 1
𝑛
, . . . , 1 − 1

𝑛
, 1.

7. Let 𝑥𝑛 = (1 + 1
𝑛
)𝑛, 𝑦𝑛 = (1− 1

𝑛+1 )
𝑛+1. Show that lim 𝑥𝑛𝑦𝑛 = 1 and conclude

that lim(1 − 1
𝑛
)𝑛 = 𝑒−1.

8. Let 𝑎 ≥ 0, 𝑏 ≥ 0. Show that lim 𝑛
√
𝑎𝑛 + 𝑏𝑛 = max{𝑎, 𝑏}

9. Let 𝑥𝑛 be a bounded sequence. If lim 𝑎𝑛 = 𝑎 and 𝑎𝑛 is an accumulation
point of 𝑥𝑛, then 𝑎 is an accumulation point of 𝑥𝑛.

10. Let 𝑥𝑛, 𝑦𝑛 be bounded sequences. Set

𝑎 = lim inf 𝑥𝑛, 𝐴 = lim sup 𝑥𝑛, 𝑏 = lim inf 𝑦𝑛, 𝐵 = lim sup 𝑦𝑛

Show that:

a) lim sup(𝑥𝑛 + 𝑦𝑛) ≤ 𝐴 + 𝐵 and lim inf(𝑥𝑛 + 𝑦𝑛) ≥ 𝑎 + 𝑏;
b) lim sup−𝑥𝑛 = −𝑎 and lim inf −𝑥𝑛 = −𝐴;
c) If 𝑥𝑛 ≥ 0, 𝑦𝑛 ≥ 0, then lim sup(𝑥𝑛 ·𝑦𝑛) ≤ 𝐴·𝐵 and lim inf(𝑥𝑛 ·𝑦𝑛) ≥ 𝑎·𝑏.

11. For each 𝑛 ∈ N, let 0 ≤ 𝑡𝑛 ≤ 1. If lim 𝑥𝑛 = lim 𝑦𝑛 = 𝑎, show that

lim[𝑡𝑛𝑥𝑛 + (1 − 𝑡𝑛)𝑦𝑛] = 𝑎

12. Let 𝑥1 = 1 and 𝑥𝑛+1 = 1 + √
𝑥𝑛. Show that 𝑥𝑛 is bounded and find lim 𝑥𝑛.

13. Show that 𝑥𝑛 doesn’t have a convergent subsequence if and only if lim |𝑥𝑛 | =
+∞.

14. Let 𝑦𝑛 > 0 for every 𝑛 ∈ N, such that
∑
𝑦𝑛 = +∞. If 𝑥𝑛 is a sequence such

that lim 𝑥𝑛
𝑦𝑛

= 𝑎, show that lim 𝑥1+...+𝑥𝑛
𝑦1+...+𝑦𝑛 = 𝑎.

15. Let 𝑦𝑛 be an increasing sequence and lim 𝑦𝑛 = +∞. Show that

lim
𝑥𝑛+1 − 𝑥𝑛
𝑦𝑛+1 − 𝑦𝑛

= 𝑎 ⇒ lim
𝑥𝑛

𝑦𝑛
= 𝑎

16. Show that
lim

1𝑝 + 2𝑝 + . . . + 𝑛𝑝
𝑛𝑝+1 =

1
𝑝 + 1
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17. Show that for every 𝑛 ∈ N, 0 < 𝑒−
(
1 + 1

1! +
1
2! + . . . +

1
𝑛!

)
< 1

𝑛!𝑛 . Conclude
that 𝑒 ∉ Q.

18. Show that lim 1
2

𝑛
√︁
(𝑛 + 1) (𝑛 + 2) . . . 2𝑛 = 4

𝑒
.

19. Suppose the sequence 𝑥𝑛 satisfies 𝑛! = 𝑛𝑛𝑒−𝑛𝑥𝑛. Show that lim 𝑛
√
𝑥𝑛 = 1.

20. Let
∑
𝑎𝑛 and

∑
𝑏𝑛 be series with positive elements. Show that if

∑
𝑏𝑛 = +∞

and ∃𝑛0 ∈ N such that 𝑎𝑛+1
𝑎𝑛

≥ 𝑏𝑛+1
𝑏𝑛

for 𝑛 > 𝑛0, then
∑
𝑎𝑛 = +∞.

21. Let 𝑝(𝑥) ∈ R[𝑥] be a polynomial of degree 2 or more. Show that the series∑ 1
𝑝 (𝑛) converges.

22. If |𝑥 | < 1 show that lim
𝑛→∞

(𝑚
𝑛

)
𝑥𝑛 = 0 for every 𝑚 ∈ R, where

(𝑚
𝑛

)
:=

𝑚(𝑚−1) ...(𝑚−𝑛+1)
𝑛! .

23. Let 𝑎 ∈ R. Show that the series
∞∑
𝑛=0

𝑎2

(1+𝑎2 )𝑛 converges and find its sum.

24. Show that for every fixed 𝑝 ∈ R, the series
∑ 1

𝑛(𝑛+1) ...(𝑛+𝑝) converges.
25. If

∑
𝑎𝑛 converges and 𝑎𝑛 > 0 then

∑
𝑎2
𝑛 and 𝑎𝑛

1+𝑎𝑛 also converge.
26. If

∑
𝑎2
𝑛 converges then 𝑎𝑛

𝑛
also converges.

27. If 𝑎𝑛 is decreasing and
∑
𝑎𝑛 converges then lim 𝑎𝑛 · 𝑛 = 0.

28. If 𝑎𝑛 is nonincreasing with lim 𝑎𝑛 = 0, show that
∑
𝑎𝑛 converges if and only

if
∑

2𝑛 · 𝑎2𝑛 converges.
29. Show that the set of accumulation points of the sequence 𝑥𝑛 = cos 𝑛 is the

closed interval [−1, 1].
30. Let 𝑎1 ≥ 𝑎2 ≥ . . . ≥ 0 and 𝑠𝑛 = 𝑎1 − 𝑎2 + . . . + (−1)𝑛−1𝑎𝑛. Show that 𝑠𝑛 is

bounded and
lim sup 𝑠𝑛 − lim inf 𝑠𝑛 = lim 𝑎𝑛





Chapter 4
Topology of R

4.1 Open sets

Let 𝑋 ⊆ R. A point 𝑝 ∈ 𝑋 is called an interior point if there is an open interval
(𝑎, 𝑏), also called a neighborhood, such that 𝑝 ∈ (𝑎, 𝑏) ⊆ 𝑋 . In other words, 𝑝
is an interior point if all points sufficiently close to 𝑝 remain in 𝑋 .

It’s easy to see that 𝑝 ∈ 𝑋 is an interior point if and only if ∃𝜖 > 0 such that
(𝑝 − 𝜖, 𝑝 + 𝜖) ⊆ 𝑋 . Equivalently, 𝑝 is an interior point if and only if∃𝜖 > 0 such
that |𝑥 − 𝑝 | < 𝜖 ⇒ 𝑥 ∈ 𝑋 .

The set of all interior points of 𝑋 , denoted by int(𝑋) (also by 𝑋◦), is called
the interior of 𝑋 . Notice that by definition, we necessarily have int(𝑋) ⊆ 𝑋 .

A set 𝑋 ⊆ R is open if 𝑋 = int(𝑋). That is to say, every point of 𝑋 is an
interior point.

Example 4.1. By definition if 𝑋 has an interior point then it contains an open
interval, in particular it is an infinite set. Hence, if 𝑋 = {𝑥1, . . . , 𝑥𝑛} is finite
then it has no interior points. Moreover, if int(𝑋) ≠ ∅ then 𝑋 is uncountable
since it contains an interval. Therefore,

int(N) = int(Z) = int(Q) = ∅,

and they can’t be open sets. Similarly, since Q is dense, any open interval
containing an irrational point also contains a rational point, hence

int(R − Q) = ∅,

and it’s not open as well.

Example 4.2. The open interval (𝑎, 𝑏) is open. Indeed, any 𝑥 ∈ (𝑎, 𝑏) is an
interior point because (𝑎, 𝑏) itself contains 𝑥. On the other hand, the closed
interval [𝑎, 𝑏] is not open because int( [𝑎, 𝑏]) = (𝑎, 𝑏) ≠ [𝑎, 𝑏]. Indeed, any
open interval containing the endpoints necessarily contain points outside [𝑎, 𝑏],
so the endpoints can’t be interior points. Similarly, if 𝑋 = [𝑎, 𝑏) or 𝑋 = (𝑎, 𝑏]
then int(𝑋) = (𝑎, 𝑏)

73
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Example 4.3. The empty set ∅ is open since its interior is also empty, i.e.
int(∅) = ∅.

Example 4.4. The union of two open intervals 𝑋 = (𝑎, 𝑏) ∪ (𝑐, 𝑑) is open.
Indeed, any interior point of 𝑋 has to be an interior point of (𝑎, 𝑏) or (𝑐, 𝑑).
Theorem 4.5. a) If 𝐴, 𝐵 ⊆ R are open then 𝐴 ∩ 𝐵 is open
b) Given an arbitrary set 𝐿. If {𝐴𝑖}𝑖∈𝐿 is a family of open sets, then

⋃
𝑖∈𝐿

𝐴𝑖 is
open.

Proof. a) Let 𝑥 ∈ 𝐴∩ 𝐵, then we can find 𝑎, 𝑏, 𝑐, 𝑑 ∈ R such that 𝑥 ∈ (𝑎, 𝑏) ⊆
𝐴 and 𝑥 ∈ (𝑐, 𝑑) ⊆ 𝐵. Let 𝑚 := max{𝑎, 𝑐} and 𝑀 := min{𝑏, 𝑑}, then
𝑥 ∈ (𝑚, 𝑀) ⊆ 𝐴 ∩ 𝐵.

b) Let 𝑥 ∈ ⋃
𝑖∈𝐿

𝐴𝑖 , then there is at least one 𝑖0 ∈ 𝐿 such that 𝑥 ∈ 𝐴𝑖0 . Since

𝐴𝑖0 is open by definition, we can find a neighborhood (𝑎, 𝑏) ∋ 𝑥 such that
(𝑎, 𝑏) ⊆ 𝐴𝑖0 ⊆ ⋃

𝑖∈𝐿
𝐴𝑖 . We conclude that every point is an interior point.

⊓⊔

Corollary 4.6. Every open set 𝑋 ⊆ R is a union of open intervals.

Proof. For each 𝑥 ∈ 𝑋 , take an open interval 𝐼𝑥 ∋ 𝑥 such that 𝐼𝑥 ⊆ 𝑋 . Then
𝑋 =

⋃
𝑥∈𝑋

𝐼𝑥 . ⊓⊔

Corollary 4.7. If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are open sets then 𝐴1 ∩ 𝐴2 ∩ . . . ∩ 𝐴𝑛 is an
open set.

The corollary above is false for countably infinite intersections, take for

example the open intervals 𝐴𝑛 = (− 1
𝑛
, 1
𝑛
). Then

∞⋂
𝑖=1
𝐴𝑖 = {0}, which is not open

(since it’s finite).

Example 4.8. Let 𝑎 ∈ R, then the set 𝑋 = R − {𝑎} is open. Indeed, set
𝐴 = (−∞, 𝑎) and 𝐵 = (𝑎, +∞). Then both 𝐴 and 𝐵 are open and 𝑋 = 𝐴∪𝐵, hence
𝑋 is open. More generally, we can use induction to show that R − {𝑎1, . . . , 𝑎𝑛}
is open.

Before proving the next theorem, we need the following lemma:

Lemma 4.9. Let {𝐼 𝑗} 𝑗∈𝐿 be a family of open intervals containing a point 𝑥 ∈ R.
Then 𝐼 =

⋃
𝑗∈𝐿

𝐼 𝑗 is itself an open interval.

Proof. Suppose 𝐼 𝑗 = (𝑎 𝑗 , 𝑏 𝑗). By hypothesis,

𝑎 𝑗 < 𝑥 < 𝑏 𝑗 , ∀ 𝑗 ∈ 𝐿.

Set 𝑎 := inf 𝑎 𝑗 and 𝑏 := sup 𝑏 𝑗 (Notice that it’s possible that 𝑎 = −∞, 𝑏 = +∞.)
We claim that 𝐼 = (𝑎, 𝑏). The inclusion 𝐼 ⊆ (𝑎, 𝑏) is clear. Conversely, let
𝑦 ∈ (𝑎, 𝑏). Then by definition of supremum and infimum, we can find 𝑎 𝑗 and
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𝑏𝑘 such that 𝑎 𝑗 < 𝑦 < 𝑏𝑘 , if 𝑦 < 𝑏 𝑗 then 𝑦 ∈ 𝐼 𝑗 . Otherwise, 𝑦 ≥ 𝑏 𝑗 , and
𝑎 𝑗 < 𝑏 𝑗 ≤ 𝑦, which implies that 𝑎𝑘 < 𝑦 < 𝑏𝑘 , and 𝑦 ∈ 𝐼𝑘 . In conclusion,
(𝑎, 𝑏) ⊆ 𝐼, hence 𝐼 = (𝑎, 𝑏). ⊓⊔

Theorem 4.10. (Structure of open sets) Every open set 𝑋 ⊆ R can be written
uniquely as a countable union of pairwise disjoints open intervals, called the
interval components of 𝑋 .

Proof. Given 𝑥 ∈ 𝑋 , let 𝐼𝑥 be the union of all open intervals 𝐼 𝑗 contained
in 𝑋 such that 𝐼 𝑗 ∋ 𝑥. By lemma 4.9, 𝐼𝑥 is an open interval. We claim that
either 𝐼𝑥 ∩ 𝐼𝑦 = ∅ or 𝐼𝑥 = 𝐼𝑦 . Indeed, if 𝐼𝑥 ∩ 𝐼𝑦 ≠ ∅ then 𝐼𝑥 ∩ 𝐼𝑦 itself is
an interval containing, say 𝑥, hence 𝐼𝑥 ∩ 𝐼𝑦 ⊆ 𝐼𝑥 , and 𝐼𝑦 ⊆ 𝐼𝑥 . Similarly,
𝐼𝑥 ∩ 𝐼𝑦 ⊆ 𝐼𝑦 ⇒ 𝐼𝑥 ⊆ 𝐼𝑦 and it follows that 𝐼𝑥 = 𝐼𝑦 .

Define 𝐿 = {𝑥 ∈ 𝑋; 𝑥 ∼ 𝑦 if 𝐼𝑥 = 𝐼𝑦}, that is, 𝐿 is constructed by identifying
elements of 𝑋 who have the same component. Then 𝑋 is the union 𝑋 =

⋃
𝑥∈𝐿

𝐼𝑥

of pairwise disjoints open intervals. In order to prove that this union is countable
we define a function that associates to each 𝑥 ∈ 𝐿 a random rational number
𝑟 (𝑥) ∈ Q contained in 𝐼𝑥 . Since 𝐼𝑥 ≠ 𝐼𝑦 ⇒ 𝐼𝑥 ∩ 𝐼𝑦 = ∅ ⇒ 𝑟 (𝑥) ≠ 𝑟 (𝑦), hence
the function 𝑟 : 𝐿 → Q is injective and corollary ?? implies that 𝐿 is countable.

We are left to prove uniqueness. Suppose 𝑋 =
∞⋃
𝑖=𝑘

𝐽𝑘 , where 𝐽𝑘 are open

intervals, say 𝐽𝑘 = (𝑎𝑘 , 𝑏𝑘), pairwise disjoints. We claim the endpoints of 𝐽𝑘
are not in X. Indeed, if 𝑎𝑘 ∈ 𝑋 then ∃𝐽𝑙 such that 𝑎𝑘 ∈ (𝑎𝑙, 𝑏𝑙), but then if we set
𝑏 := min{𝑏𝑘 , 𝑏𝑙}, we have (𝑎𝑘 , 𝑏) ⊆ 𝐽𝑘 ∩ 𝐽𝑙, a contradiction since 𝐽𝑘 ∩ 𝐽𝑙 = ∅.
Therefore, for each 𝑥 ∈ 𝐽𝑘 , 𝐽𝑘 is the largest open interval containing 𝑥 inside 𝑋 ,
and we must have 𝐽𝑘 = 𝐼𝑥 . ⊓⊔

Corollary 4.11. (Connectedness of intervals) Let 𝐼 ⊆ R be an open interval. If
𝐼 = 𝐴 ∪ 𝐵, where 𝐴 and 𝐵 are open and 𝐴 ∩ 𝐵 = ∅, then either 𝐴 = 𝐼 or 𝐵 = 𝐼

(𝐵 = ∅ or 𝐴 = ∅.)

4.2 Closed sets

We say a point 𝑎 ∈ R is adherent (or closure point) of the set 𝑋 ⊆ R if it is limit
of a sequence of points in 𝑋 . Every point of 𝑋 is adherent to itself, since any
point 𝑥 ∈ 𝑋 is the limit of the constant sequence 𝑥𝑛 = 𝑥.

Example 4.12. Consider 𝑋 = (0, +∞). Then 0 ∉ 𝑋 but 0 is an adherent point,
since 0 = lim 𝑥𝑛, where 𝑥𝑛 = 1

𝑛
∈ 𝑋 .

Theorem 4.13. A point 𝑎 ∈ R is adherent of the set 𝑋 ⊆ R if and only if for
every 𝜖 > 0, (𝑎 − 𝜖, 𝑎 + 𝜖) ∩ 𝑋 ≠ ∅.

Proof. Suppose 𝑎 is an adherent point, say lim 𝑥𝑛 = 𝑎, where 𝑥𝑛 ∈ 𝑋 . Given
any 𝜖 > 0, we can find 𝑛0 ∈ N such that 𝑛 > 𝑛0 ⇒ 𝑥𝑛 ∈ (𝑎 − 𝜖, 𝑎 + 𝜖), in
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particular, (𝑎 − 𝜖, 𝑎 + 𝜖) ∩ 𝑋 ≠ ∅. Conversely, suppose (𝑎 − 𝜖, 𝑎 + 𝜖) ∩ 𝑋 ≠ ∅
for every 𝜖 > 0. By choosing 𝜖 = 1

𝑛
for each 𝑛 ∈ N, we are able to construct a

sequence 𝑥𝑛 ∈ 𝑋 such that 𝑥𝑛 ∈ (𝑎 − 1
𝑛
, 𝑎 + 1

𝑛
), and hence lim 𝑥𝑛 = 𝑎. ⊓⊔

Corollary 4.14. A point 𝑎 ∈ R is adherent of the set 𝑋 ⊆ R if and only if every
open interval 𝐼 ∋ 𝑎 we have 𝐼 ∩ 𝑋 ≠ ∅.

Corollary 4.15. Suppose 𝑋 ⊆ R is bounded, then sup 𝑋 and inf 𝑋 are adherent
points.

The set of all adherent points of 𝑋 , denoted by 𝑋 is called the closure of 𝑋 .
A set 𝑋 ⊆ R is closed if 𝑋 = 𝑋 . In other words, a set 𝑋 is closed if and only if
it contains all of its adherent points.

Notice that a set 𝑋 ⊆ R is dense in R if and only if 𝑋 = R.

Example 4.16. The closed interval [𝑎, 𝑏] is a closed set. Indeed, for any se-
quence 𝑥𝑛 ∈ [𝑎, 𝑏], we must have 𝑎 ≤ lim 𝑥𝑛 ≤ 𝑏, hence [𝑎, 𝑏] = [𝑎, 𝑏].
Similarly, (𝑎, 𝑏) = [𝑎, 𝑏], since in this case the endpoints aren’t in (𝑎, 𝑏); but
still, we have 𝑎 = lim(𝑎 + 1

𝑛
) and 𝑏 = lim(𝑏 − 1

𝑛
).

Example 4.17. Using the density of the rationals in R we have Q = R and
R − Q = R.

Theorem 4.18. A set 𝑋 ⊆ R is closed if and only if 𝑋𝑐 is open.

Proof. 𝑋 is closed if and only if 𝑋𝑐 doesn’t contain any adherent points, which
is the case if and only if ∀𝑥 ∈ 𝑋𝑐, ∃𝜖 > 0 such that (𝑥 − 𝜖, 𝑥 + 𝜖) ⊆ 𝑋𝑐, that is
to say, 𝑋𝑐 is open. ⊓⊔

Corollary 4.19. R itself and ∅ are closed sets.

Corollary 4.20. If 𝐴 and 𝐵 are closed sets then 𝐴 ∪ 𝐵 is closed.

Proof. Notice that (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 is open. ⊓⊔

Corollary 4.21. Let {𝐴 𝑗} 𝑗∈𝐿 be a family of closed sets. Then
⋂
𝑗∈𝐿

𝐴 𝑗 is closed.

Example 4.22. Arbitrary union of closed sets need not to be closed. For example,
for each 𝑥 ∈ (0, 1), the set {𝑥} is closed since it’s finite, but

⋃
𝑥∈ (0,1)

{𝑥} = (0, 1)

is open.

Theorem 4.23. Let 𝑋 ⊆ R be an arbitrary set. Then 𝑋 is closed. (i.e. 𝑋 = 𝑋)

Proof. Take 𝑥 ∈ 𝑋𝑐
, then we can find an open interval 𝐼 ∋ 𝑥 such that 𝐼∩𝑋 = ∅,

hence 𝑥 in an interior point of 𝑋
𝑐
. ⊓⊔

Example 4.24. R itself is closed, and so is ∅. Every finite set {𝑥1, . . . , 𝑥𝑛} ⊆ R
is closed, since its complement is open. Similarly, Z is closed.
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Example 4.25. The sets Q, R − Q, (𝑎, 𝑏], [𝑎, 𝑏) are not open nor closed.

Theorem 4.26. Every set 𝑋 ⊆ R has a countable dense subset 𝐷, i.e. 𝐷 = 𝑋 .

Proof. Notice that, if we fix 𝑛 ∈ N, we can write R =
⋃
𝑝∈Z

[
𝑝

𝑛
,
𝑝+1
𝑛

)
. For each

𝑛 ∈ N and 𝑝 ∈ Z if 𝑋 ∩
[
𝑝

𝑛
,
𝑝+1
𝑛

)
≠ ∅, choose a number 𝑥𝑛𝑝 ∈ 𝑋 ∩

[
𝑝

𝑛
,
𝑝+1
𝑛

)
,

and let 𝐷 be the set of all such 𝑥𝑛𝑝. By construction, 𝐷 is countable. We claim
𝐷 = 𝑋 . Indeed, let 𝐼 be an open interval of length 𝜖 > 0 containing a point
𝑥 ∈ 𝑋 . For 𝑛 sufficiently large such that 1

𝑛
< 𝜖 , we can find a 𝑝 ∈ Z such that[

𝑝

𝑛
,
𝑝+1
𝑛

)
⊆ 𝐼, and hence 𝑥𝑛𝑝 ∈ 𝐼. ⊓⊔

A point 𝑎 ∈ R is an accumulation point of the set 𝑋 ⊆ R if 𝑎 = lim 𝑥𝑛, for
𝑥𝑛 ∈ 𝑋 and 𝑥𝑛 is sequence with pairwise disjoint elements. Alternatively, every
open interval containing 𝑎 contains points of 𝑋 other than 𝑎 itself.

The set of all accumulation points of 𝑋 is called the derived set of 𝑋 , denoted
by 𝑋 ′.

We easily see that if 𝑋 ′ ≠ ∅ then 𝑋 is infinite.

Example 4.27. Let 𝑋 = {1, 1
2 ,

1
3 , . . .}. Then 𝑋 ′ = {0}.

Example 4.28. (𝑎, 𝑏)′ = [𝑎, 𝑏]. Also,Q′ = (R−Q)′ = R′ = R, whereas Z′ = ∅.

Given a point 𝑎 ∈ R and a set 𝑋 ⊆ R. We say 𝑎 is an isolated point of 𝑋 if
𝑎 is not an accumulation point. In other words, 𝑎 is isolated if we can find an
open interval 𝐼 ∋ 𝑎 such that 𝐼 ∩ 𝑋 = {𝑎}.
Example 4.29. Every natural number 𝑛 ∈ N is isolated. More generally, every
𝑛 ∈ Z is isolated.

Theorem 4.30. For every 𝑋 ⊆ R, we have

𝑋 = 𝑋 ∪ 𝑋 ′.

Proof. Since 𝑋 ⊆ 𝑋 and 𝑋 ′ ⊆ 𝑋 , we have 𝑋 ∪ 𝑋 ′ ⊆ 𝑋 . Conversely, let 𝑎 ∈ 𝑋 .
Then every open interval 𝐼 containing 𝑎 also contains points of 𝑋 , either 𝑎 itself
or a point different from 𝑎, hence 𝑎 ∈ 𝑋 ∪ 𝑋 ′. ⊓⊔

Corollary 4.31. A set 𝑋 is closed if and only if 𝑋 ′ ⊆ 𝑋 .

Corollary 4.32. If all the points of 𝑋 are isolated then 𝑋 is countable.

Proof. Let 𝐷 be a countable dense subset of 𝑋 , i.e. 𝐷 = 𝑋 , and 𝑥 ∈ 𝑋 . By
definition, any interval containing 𝑥 contains points of 𝐷, since 𝑥 is isolated,
that can only happen if 𝑥 ∈ 𝐷. Hence 𝑋 = 𝐷. ⊓⊔

We need the following lemma to prove the next theorem.
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Lemma 4.33. Let 𝑋 ⊆ R be a closed nonempty set with no isolated points. Then
∀𝑥 ∈ R, ∃𝐼𝑥 ⊆ 𝑋 , a closed bounded nonempty subset with no isolated points,
such that 𝑥 ∉ 𝐼𝑥 .

Proof. Since 𝑋 is infinite, we can find a point 𝑦 ∈ 𝑋 , with 𝑦 ≠ 𝑥. Take a interval
(𝑎, 𝑏) ⊆ R such that 𝑥 ∉ [𝑎, 𝑏] and 𝑦 ∈ (𝑎, 𝑏). Set 𝐴 = (𝑎, 𝑏) ∩ 𝑋 , then 𝐴 ⊆ 𝑋

is bounded and nonempty. The set 𝐼𝑥 = 𝐴 satisfies the desired properties. ⊓⊔

Theorem 4.34. Let 𝑋 ⊆ R be a nonempty closed set such that 𝑋 ′ = 𝑋 (𝑋 has
no isolated points). Then 𝑋 is uncountable.

Proof. The proof is based on lemma 4.33 applied inductively in the following
way: Let {𝑥1, 𝑥2, . . .} be any countable subset of 𝑋 . We use the lemma to find
𝐼1 ⊆ 𝑋 such that 𝑥1 ∉ 𝐼1, and proceed inductively by finding 𝐼𝑛 ⊆ 𝐼𝑛−1 such
that 𝑥𝑛 ∉ 𝐼𝑛. Choose 𝑦𝑛 ∈ 𝐼𝑛 for each 𝑛. Then the sequence 𝑦𝑛 is bounded, by
Bolzano-Weierstrass theorem, it has a converging subsequence, say 𝑦𝑛𝑘 → 𝑦.
For 𝑛 sufficiently large we have 𝑦 ∈ 𝐼𝑛, hence 𝑦 ∈ 𝐼𝑛 for every 𝑛 ∈ N, since
the 𝐼𝑛 are nested, and moreover 𝑦 ≠ 𝑥𝑛 by construction. We conclude that it’s
impossible for 𝑋 to be {𝑥1, 𝑥2, . . .}, a countable set. ⊓⊔

Corollary 4.35. (The contrapositive version) If 𝑋 is a closed countable
nonempty set then 𝑋 has an isolated point.

4.3 The Cantor set

The Cantor set is a bounded set 𝐾 ⊆ [0, 1] defined in the following way: Start
with the interval [0, 1] and remove the middle third open interval ( 1

3 ,
2
3 ). We

are left with [0, 1
3 ] and [ 2

3 , 1]. Proceed inductively, removing the middle third
of each interval obtained in the previous interation, what is left is the Cantor set
𝐾 .
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For example, the numbers 1
3 ,

2
3 ,

1
9 ,

2
9 , . . . which are endpoints of removed inter-

vals in each iteration are elements of the Cantor set 𝐾 . So 𝐾 has a countable
subset. Interesting enough, those are not the only points of 𝐾 , as a matter of fact
most points of 𝐾 are not endpoints of removed intervals, and it turns out the 𝐾
is actually uncountable as we shall see.

Since in each iteration we remove a finite amount of intervals, the number of
intervals removed is countable. If we denote each open interval removed by 𝐼 𝑗 ,
then

𝐾 = [0, 1] −
∞⋃
𝑗=1
𝐼 𝑗 = [0, 1] ∩ ©­«R −

∞⋃
𝑗=1
𝐼 𝑗

ª®¬ .
Since 𝐾 is the union of two closed sets, it is closed.

Lemma 4.36. 𝐾 doesn’t have interior points, i.e. int(𝐾) = ∅.

Proof. 𝐾 doesn’t have any open intervals, because after each interaction the
remaining intervals shrink, so it’s impossible to exists an interval 𝐼 ⊆ 𝐾 of
length 𝑙, for any 𝑙 ∈ R. Hence, 𝐾 doesn’t have interior points. ⊓⊔

Lemma 4.37. Let 𝑅 be the set of endpoints of removed intervals in each iteration.
Then 𝑅 is dense in 𝐾 , i.e. 𝑅 = 𝐾 .

Proof. We have to show that given any 𝑥 ∈ 𝐾 , for every 𝜖 > 0, we must have
(𝑥− 𝜖, 𝑥+ 𝜖) ∩𝑅 ≠ ∅. If 𝜖 > 1

2 , the result is immediate, so let’s assume 𝜖 ≤ 1
2 . At

least one of intervals, (𝑥 − 𝜖, 𝑥] or [𝑥, 𝑥 + 𝜖), is entirely contained in [0, 1], say
(𝑥−𝜖, 𝑥]. After the 𝑛-th iteration, only intervals of length 1

3𝑛 are left, hence when
1

3𝑛 < 𝜖 , part of (𝑥 − 𝜖, 𝑥] will be removed (or was removed already previously),
and it can’t be the whole (𝑥 − 𝜖, 𝑥] because 𝑥 ∈ 𝐾 . Hence, the endpoint of the
removed interval is the point of 𝑅 we are looking for. ⊓⊔

Corollary 4.38. 𝐾 is uncountable.

Proof. It follows directly from lemma 4.37 and theorem 4.34. ⊓⊔

4.4 Compact Sets

A open cover of a set 𝑋 ⊆ R is a collection C = {𝑈 𝑗} 𝑗∈𝐿 (not necessarily
countable) of open sets 𝑈 𝑗 ⊆ R, such that 𝑋 ⊆ ⋃

𝑗∈𝐿
𝑈 𝑗 . A subcover C′ of C is

a collection formed by sub-indexes 𝐿′ ⊆ 𝐿, that is, C′ = {𝑈 𝑗} 𝑗∈𝐿′ , such that
𝑋 ⊆ ⋃

𝑗∈𝐿′
𝑈 𝑗 .

A set 𝑋 ⊆ R is called compact, if every open cover has a finite subcover, that
is to say, we can take 𝐿′ a finite set in the definition above.
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Example 4.39. Let 𝑋 = ( 7
24 , 1). The sets 𝑈1 = (0, 1

3 ),𝑈2 = ( 1
4 ,

3
4 ),𝑈3 = ( 2

3 , 1)
form a (finite) open cover of 𝑋 , since 𝑋 ⊆ 𝑈1 ∪𝑈2 ∪𝑈3. Also,𝑈2 = ( 1

4 ,
3
4 ) and

𝑈3 = ( 2
3 , 1) form a subcover, since it is still true that 𝑋 ⊆ 𝑈2 ∪𝑈3

0 0.25 0.50 0.75 1.00

Example 4.40. Consider the set 𝑋 = {1, 1
2 ,

1
3 , . . .}, which has all of its points

isolated, so it’s possible to find an open interval 𝐼𝑛 around each point 1
𝑛
∈ 𝑋 ,

such that 𝐼𝑛 ∩ { 1
𝑛
} = { 1

𝑛
}. Therefore, C = {𝐼𝑛}𝑛∈N forms an open cover of 𝑋 ,

and moreover, C doesn’t have any open subcover, since if we remove at least
one 𝐼𝑛 of C, it ceases to be a cover in the first place.

Theorem 4.41. (Borel-Lebesgue Theorem – simple version) Any closed interval
[𝑎, 𝑏] ⊆ R is compact.

Proof. We need to prove that any open cover C = {𝐼 𝑗} 𝑗∈𝐿 of [𝑎, 𝑏] has a finite
subcover. We may assume that 𝐼 𝑗 are open intervals, since each 𝐼 𝑗 is open, so it
has to contain an interval around each point.

Let 𝑋 be the set of all points 𝑥 ∈ [𝑎, 𝑏] such that [𝑎, 𝑥] can be cover be
finitely many 𝐼 𝑗 . Notice that 𝑋 ≠ ∅, since 𝑎 ∈ 𝑋 . Set 𝑐 = sup 𝑋 , we claim 𝑐 = 𝑏.
First, we prove 𝑐 ∈ 𝑋 . Indeed, 𝑐 ≤ 𝑏, so we can find 𝐼 𝑗0 = (𝑎0, 𝑏0) covering 𝑐.
Since 𝑐 > 𝑎0, we can find 𝑎0 < 𝑥 ≤ 𝑐 such that [𝑎, 𝑥] ⊆ 𝐼1 ∪ . . . ∪ 𝐼𝑛, but then
[𝑎, 𝑐] ⊆ 𝐼1 ∪ . . .∪ 𝐼𝑛 ∪ 𝐼 𝑗0 , hence 𝑐 ∈ 𝑋 . If 𝑐 < 𝑏, then we can find 𝑐′ ∈ 𝐼 𝑗0 such
that 𝑐 < 𝑐′ < 𝑏. But then [𝑎, 𝑐′] would still be covered by 𝐼1 ∪ . . . ∪ 𝐼𝑛 ∪ 𝐼 𝑗0 ,
and 𝑐 isn’t an upper bound, a contradiction. ⊓⊔
Corollary 4.42. (Borel-Lebesgue Theorem – classical version) Any bounded
and closed set 𝑋 ⊆ R is compact.

Proof. Since 𝑋 is closed, its complement 𝑋𝑐 = R − 𝑋 is open. Moreover, we
can find [𝑎, 𝑏] ⊇ 𝑋 , because 𝑋 is also bounded. Let C = {𝐼 𝑗} 𝑗∈𝐿 be a open
cover of 𝑋 , then C ∪ 𝑋𝑐 is an open cover of [𝑎, 𝑏], by the theorem above we can
extract 𝐼 𝑗1 ∪ . . . ∪ 𝐼 𝑗𝑛 ∪ 𝑋𝑐, a finite subcover of [𝑎, 𝑏]. Thus 𝐼 𝑗1 ∪ . . . ∪ 𝐼 𝑗𝑛 is a
finite subcover of 𝑋 . ⊓⊔
Example 4.43. The real line R is not compact. Indeed, consider the cover

R =
∞⋃
𝑛=1

(−𝑛, 𝑛). Any finite subcover would be equal to the largest interval since

they are nested, and hence can’t cover the whole line. Similarly, (0, 1] is not

compact either, if we consider the nested cover
∞⋃
𝑛=1

( 1
𝑛
, 2), we can argue like

before.
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Theorem 4.44. (Heine–Borel theorem) Let 𝐾 ⊆ R. The following are equiva-
lent:

1. 𝐾 is closed and bounded;
2. 𝐾 is compact;
3. Every infinite subset of 𝐾 has an accumulation point in 𝐾;
4. (Sequential compactness) Every sequence 𝑥𝑛 ∈ 𝐾 has a convergent subse-

quence with limit in 𝐾 .

Proof. We already know that 1 ⇒ 2. We first prove 2 ⇒ 3. It’s easy to show
the contrapositive of 3, namely, if 𝑋 ⊆ 𝐾 doesn’t have accumulation points in
𝐾 then 𝑋 is finite. Indeed, we can find for each 𝑥 ∈ 𝐾 an interval 𝐼𝑥 such that
𝐼𝑥 ∩ 𝑋 = ∅ if 𝑥 ∉ 𝑋 , and 𝐼𝑥 ∩ 𝑋 = {𝑥} if 𝑥 ∈ 𝑋 . Then

⋃
𝐼𝑥 is a cover of 𝐾 , by

compactness, we extract a finite subcover, say 𝐼𝑥1 ∪ . . . 𝐼𝑥𝑛 , but this would force
𝑋 = {𝑥1, . . . , 𝑥𝑛},i.e. 𝑋 is finite.

We now show 3 ⇒ 4. Consider the set 𝑋 = {𝑥1, 𝑥2, . . .} formed by elements of
the sequence 𝑥𝑛 ∈ 𝐾 . If 𝑋 is finite then at least one member of the sequence repeat
itself infinitely many times, hence forms a constant (convergent) subsequence.
Otherwise, by hypothesis we have some 𝑎 ∈ 𝑋 ′ that is also in 𝐾 . Equivalently,
every neighborhood of 𝑎 ∈ 𝐾 contains point of the sequence 𝑥𝑛, hence a
subsequence of 𝑥𝑛 converges to 𝑎.

Finally, we show 4 ⇒ 1. The proof is by contradiction, namely, suppose 𝐾 is
not bounded or not closed. If 𝐾 is not closed, at least one sequence 𝑥𝑛 converges
to a point outside 𝐾 , so any subsequence of this sequence would also converge
to point not in 𝐾 , a contradiction. If 𝐾 is not bounded we can easily construct an
unbounded sequence, say𝐾 is unbounded from above, then construct a sequence
satisfying 𝑥𝑛 + 1 < 𝑥𝑛+1, and any subsequence would also be increasing and
unbounded, hence can’t converge. ⊓⊔

Corollary 4.45. (Bolzano-Weierstrass alternative version) Every infinite bounded
set 𝑋 ⊆ R has an accumulation point.

Proof. Apply theorem 4.44 to 𝑋 . ⊓⊔

Corollary 4.46. Let 𝐾1 ⊇ 𝐾2 ⊇ . . . be a nested sequence of nonempty compact
sets. Then

∞⋂
𝑗=1
𝐾 𝑗 is compact and nonempty.

Example 4.47. The Cantor set 𝐾 is compact since it’s closed and bounded.
Every finite set is compact. Z is not compact because it’s unbounded, nor is R
itself. Q ∩ [0, 1] is bounded but it’s not compact because it’s not closed.
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Exercises

1. Show the following: A set 𝑋 ⊆ R is open if and only if for every sequence
𝑥𝑛 converging to 𝑎 ∈ 𝐴, 𝑥𝑛 ∈ 𝐴 for 𝑛 sufficiently large.

2. Let 𝑋 ⊆ R be open. Show that if 𝑎 ∈ R, then 𝑎 + 𝑋 is also open, where
𝑎 + 𝑋 = {𝑎 + 𝑥; 𝑥 ∈ 𝑋}.

3. Show that int(𝑋 ∩ 𝑌 ) = int(𝑋) ∩ int(𝑌 ), but in general int(𝑋 ∪ 𝑌 ) ≠

int(𝑋) ∪ int(𝑌 ). Given an example which illustrates the latter fact.
4. Let 𝐴 be open and 𝑎 ∈ 𝐴. Show that 𝐴 − {𝑎} is open as well.
5. Show that every collection of nonempty open sets, pairwise disjoints, is

countable.
6. Show that the set of accumulation points of a sequence is closed.
7. Let 𝐶 be closed and 𝑋 ⊆ 𝐶. Show that if 𝐶 is closed then 𝑋 ⊆ 𝐶.
8. If lim 𝑥𝑛 = 𝑎 and 𝑋 = {𝑥1, 𝑥2, . . .}, show that 𝑋 = 𝑋 ∪ {𝑎}.
9. Let 𝐼 be a closed interval and suppose 𝐼 = 𝐴∪ 𝐵, where 𝐴, 𝐵 are closed and

disjoints. Show that either 𝐴 = 𝐼 or 𝐵 = 𝐼.
10. Show that 1

4 is an element of the Cantor set 𝐾 . [Hint: Convince yourself that
1
4 is an accumulation point]

11. Let 𝑋 ⊆ R be countable. Construct a sequence whose accumulation points is
the set 𝑋 . Use this to show that every closed set is the set of all accumulation
points of a sequence. [Hint: WriteN as a countable union of infinite disjoints
subsets.]

12. Let 𝐾 denote the Cantor set. Show that [0, 1] = {|𝑥 − 𝑦 |; 𝑥, 𝑦 ∈ 𝐾}. [Hint:
Use the fact that proper fractions whose denominator are power of 3 are
dense in [0, 1].]

13. Given any 𝛼 > 0. Show that we can find elements 𝑥1, 𝑥2, . . . , 𝑥𝑛 of the
Cantor set such that 𝛼 = 𝑥1 + 𝑥2 + . . . + 𝑥𝑛. [Hint: Use exercise 12.]

14. Show that 𝑋 ∪ 𝑌 = 𝑋 ∪𝑌 , but in general 𝑋 ∩ 𝑌 ≠ 𝑋 ∩𝑌 . Given an example
which illustrates the latter fact.

15. Give an example of nested sequence 𝐹1 ⊃ 𝐹2 ⊃ . . . of closed nonempty sets
such that

⋂
𝑗

𝐹𝑗 = ∅.

16. Show that a set 𝑋 is dense in R if and only if 𝑋𝑐 has empty interior.
17. Give an example of open set 𝐴 such that Q ⊆ 𝐴 and R − 𝐴 is uncountable.
18. Given an example of an uncountable closed set containing only transcen-

dental numbers. [Hint: Use exercise 17.]
19. Given a nonempty set 𝑋 ⊆ R and point 𝑎 ∈ R, we define the distance of 𝑎

to 𝑋 as the number 𝑑 (𝑎, 𝑋) = inf{|𝑥 − 𝑎 |; 𝑥 ∈ 𝑋}. Show that

1. 𝑑 (𝑎, 𝑋) = 0 ⇐⇒ 𝑎 ∈ 𝑋
2. If 𝑋 is closed then we can find 𝑏 ∈ 𝑋 such that 𝑑 (𝑎, 𝑋) = |𝑎 − 𝑏 |

20. Show that if 𝑋 is bounded from above then 𝑋 is as well. Moreover, show
that sup 𝑋 = sup 𝑋 . Prove the equivalent result for inf 𝑋 .

21. Show that if 𝑋 is bounded then sup 𝑋 and inf 𝑋 are adherent points.
22. Show that for every 𝑋 ⊆ R, the derived set 𝑋 ′ is closed.
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23. Show that 𝑎 is an accumulation point of 𝑋 if and only if it is an accumulation
point of 𝑋 .

24. Show that (𝑋 ∪ 𝑌 )′ = 𝑋 ′ ∪ 𝑌 ′.
25. Let 𝑋 ⊆ R be an open set. Show that every point of 𝑋 is an accumulation

point of 𝑋 .
26. Let 𝑋 ⊆ R be a closed set and 𝑎 ∈ 𝑋 . Show that 𝑎 is an isolated point if and

only if 𝑋 − {𝑎} is closed.
27. Explain the meaning of the following sentences. You can’t use the words in

italic in your explanation.

a. 𝑎 ∈ 𝑋 is not an interior point of 𝑋;
b. 𝑎 ∈ R is not an adherent point of 𝑋;
c. 𝑋 ⊆ R is not an open set;
d. 𝑋 ⊆ R is not a closed set;
e. 𝑎 ∈ R is not an accumulation point of 𝑋;
f. 𝑋 ′ = ∅;
g. 𝑋 ⊆ 𝑌 but 𝑋 is not dense in 𝑌 ;
h. 𝑖𝑛𝑡 (𝑋) = ∅;
i. 𝑋 ∩ 𝑋 ′ = ∅;
j. 𝑋 ⊆ R is not a compact set;

28. (Lindelof Theorem) Let 𝑋 ⊆ R. Any open cover of 𝑋 has a countable
subcover.

29. Let 𝑋 ⊆ R be an infinite closed countable set. Show that 𝑋 has infinitely
many isolated points.

30. Show that every real number is the limit of a sequence of pairwise disjoint
transcendental numbers.

31. Show that if 𝑋 is uncountable then 𝑋 ∩ 𝑋 ′ ≠ ∅.
32. Obtain an open cover of Q that doesn’t have a finite subcover. Do the same

for [0, +∞).
33. Show that the following are equivalent:

a. 𝑋 is bounded;
b. Every infinite subset of 𝑋 has an accumulation point (which could be

outside 𝑋);
c. Every sequence 𝑥𝑛 ∈ 𝑋 has a convergent subsequence.

34. (Baire Category Theorem) If 𝑋1, 𝑋2, 𝑋3, . . . are closed sets with empty

interior, then their union
∞⋃
𝑗=1
𝑋 𝑗 has empty interior. [Hint: Use the idea of

the proof of theorem 96 from the notes]
35. Show that Q is not the intersection of a countable collection of open sets.
36. Let 𝑋 ⊆ R. Show that if 𝑋 is uncountable then 𝑋 ′ is also.
37. Show that for any 𝑋 ⊆ R, the set 𝑋 − 𝑋 ′ is countable.
38. A point 𝑎 ∈ R is called condensation point of 𝑋 , when every open interval

containing 𝑎, contains uncountable points of 𝑋 . Let 𝑋𝑐 denotes the set of
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all condensation points. Show that 𝑋𝑐 is a perfect set, i.e. closed with no
isolated points, and that 𝑋 − 𝑋𝑐 is countable.

39. (Bendixson theorem) Every closed set 𝑋 ⊆ R can be written as a union of
a perfect set and a countable set. [Hint: Use the exercise 38.]



Chapter 5
Limits

5.1 The limit of a function

Let 𝑓 : 𝑋 ⊆ R → R be a function of a real variable, and 𝑎 ∈ 𝑋 ′. We say the
number 𝐿 ∈ R is the limit of 𝑓 (𝑥) as 𝑥 approaches 𝑎, denoted by

lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿,

if given 𝜖 > 0, we can find 𝛿 > 0, such that for every 𝑥 ∈ 𝑋:

0 < |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖.

In other words, 𝑓 (𝑥) can be made arbritarily close to 𝐿 by choosing 𝑥 ≠ 𝑎 in a
sufficiently small neighborhood (𝑎 − 𝛿, 𝑎 + 𝛿) of 𝑎.

Notice that 𝑎 ∈ 𝑋 ′ is an accumulation point, so the definition makes sense
even if 𝑎 ∉ 𝑋 . In fact, most interesting cases are when 𝑎 ∉ 𝑋 . If 𝑎 is not an
accumulation point, i.e. an isolated point, then the same definition would imply
that every number 𝐿 ∈ R is a limit! Hence, the definition only makes sense if
𝑎 ∈ 𝑋 ′.

Theorem 5.1. (Uniqueness of limits) Let 𝑋 ⊆ R, 𝑓 : 𝑋 → R and 𝑎 ∈ 𝑋 ′. If
lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿 and lim
𝑥→𝑎

𝑓 (𝑥) = 𝑀 , then 𝐿 = 𝑀 .

Proof. Given any 𝜖 > 0, we can find 𝛿, 𝛾 such that

|𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖

2
, and |𝑥 − 𝑎 | < 𝛾 ⇒ | 𝑓 (𝑥) − 𝑀 | < 𝜖

2

Let 𝛼 = min{𝛿, 𝛾} then

|𝑥 − 𝑎 | < 𝛼 ⇒ |𝐿 − 𝑀 | ≤ |𝐿 − 𝑓 (𝑥) | + | 𝑓 (𝑥) − 𝑀 | < 𝜖

2
+ 𝜖

2
= 𝜖 .

This is only possible if 𝐿 − 𝑀 = 0 ⇒ 𝐿 = 𝑀 . ⊓⊔

85
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Theorem 5.2. (Restriction of limits) Let 𝑌 ⊆ 𝑋 ⊆ R, 𝑓 : 𝑋 → R, 𝑎 ∈ 𝑋 ′ ∩ 𝑌 ′.
Consider the restriction 𝑔 : 𝑌 → R given by 𝑔(𝑥) = 𝑓 (𝑥) (Also written as
𝑓 |𝑌 (𝑥)). If lim

𝑥→𝑎
𝑓 (𝑥) = 𝐿 then lim

𝑥→𝑎
𝑔(𝑥) = 𝐿.

Proof. Self-evident. ⊓⊔

Theorem 5.3. (Local boundedness) If lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿, then ∃𝑀 > 0, 𝛿 > 0 such
that 0 < |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) | < 𝑀 .

Proof. Take 𝜖 = 1 in the definition. Then we can find 𝛿 > 0 such that 0 <

|𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝐿 | < 1 ⇒ | 𝑓 (𝑥) | < |𝐿 | + 1 =: 𝑀 . ⊓⊔

Theorem 5.4. (Squeeze-theorem) Let 𝑋 ⊆ R, 𝑓 , 𝑔, ℎ : 𝑋 → R and 𝑎 ∈ 𝑋 ′. If
for every 𝑥 ≠ 𝑎:

𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥),
then

lim
𝑥→𝑎

𝑓 (𝑥) = lim
𝑥→𝑎

ℎ(𝑥) = 𝐿 ⇒ lim
𝑥→𝑎

𝑔(𝑥) = 𝐿

Proof. We can find 𝛿, 𝑔 > 0 such that 0 < |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖 ⇒
𝐿 − 𝜖 < 𝑓 (𝑥), and 0 < |𝑥 − 𝑎 | < 𝛾 ⇒ |ℎ(𝑥) − 𝐿 | < 𝜖 ⇒ ℎ(𝑥) < 𝐿 + 𝜖 .

Hence, if we set 𝛼 = min{𝛿, 𝛾} then 0 < |𝑥 − 𝑎 | < 𝛼 ⇒ 𝐿 − 𝜖 < 𝑓 (𝑥) ≤
𝑔(𝑥) ≤ ℎ(𝑥) < 𝐿 + 𝜖 ⇒ |𝑔(𝑥) − 𝑎 | < 𝜖. ⊓⊔

Theorem 5.5. (Monotonicity preservation) Let 𝑋 ⊆ R, 𝑓 , 𝑔 : 𝑋 → R and
𝑎 ∈ 𝑋 ′. If lim

𝑥→𝑎
𝑓 (𝑥) = 𝐿 and lim

𝑥→𝑎
𝑔(𝑥) = 𝑀 and 𝐿 < 𝑀 then there exists 𝛿 > 0,

such that 0 < |𝑥 − 𝑎 | < 𝛿 ⇒ 𝑓 (𝑥) < 𝑔(𝑥).

Proof. Set 𝜖 := 𝑀−𝐿
2 . There exists 𝛿 > 0 such that 0 < |𝑥 − 𝑎 | < 𝛿 ⇒

| 𝑓 (𝑥) − 𝐿 | < 𝜖 and |𝑔(𝑥) − 𝑀 | < 𝜖 . It follows that, 𝑓 (𝑥) < 𝜖 + 𝐿 < 𝑔(𝑥). ⊓⊔

Corollary 5.6. If lim
𝑥→𝑎

𝑓 (𝑥) > 0, then there exists 𝛿 > 0 such that 0 < |𝑥 − 𝑎 | <
𝛿 ⇒ 𝑓 (𝑥) > 0.
Corollary 5.7. If 𝑓 (𝑥) ≤ 𝑔(𝑥) for every 𝑥, then lim

𝑥→𝑎
𝑓 (𝑥) ≤ lim

𝑥→𝑎
𝑔(𝑥).

Theorem 5.8. (Equivalent definition of limit) Let 𝑋 ⊆ R, 𝑓 : 𝑋 → R and
𝑎 ∈ 𝑋 ′. Then lim

𝑥→𝑎
𝑓 (𝑥) = 𝐿 if and only if for every sequence 𝑥𝑛 ∈ 𝑋 − {𝑎}, with

𝑥𝑛 → 𝑎, we have lim
𝑥→𝑎

𝑓 (𝑥𝑛) = 𝐿.

Proof. Suppose lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿 and 𝑥𝑛 → 𝑎. Given 𝜖 > 0, there exists 𝛿 > 0
and 𝑛0 ∈ N such that 0 < |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖 and 𝑛 > 𝑛0 ⇒ 0 <
|𝑥𝑛 − 𝑎 | < 𝛿. Therefore, 𝑛 > 𝑛0 ⇒ | 𝑓 (𝑥𝑛) − 𝐿 | < 𝜖 .

Conversely, suppose 𝑓 (𝑥𝑛) → 𝐿 for every 𝑥𝑛 → 𝑎 but lim
𝑥→𝑎

𝑓 (𝑥) ≠ 𝐿.
There exists 𝜖 > 0, such that we can find a sequence 𝑥𝑛 ∈ 𝑋 − {𝑎} satisfying
0 < |𝑥𝑛 − 𝑎 | < 1

𝑛
⇒ | 𝑓 (𝑥𝑛) − 𝐿 | ≥ 𝜖 , but then this sequence converges to 𝑎, yet

it’s not true that 𝑓 (𝑥𝑛) → 𝐿, a contradiction. ⊓⊔
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Corollary 5.9. (Properties of limits) Let 𝑋 ⊆ R, 𝑓 , 𝑔 : 𝑋 → R and 𝑎 ∈ 𝑋 ′.

1. lim
𝑥→𝑎

[ 𝑓 (𝑥) ± 𝑔(𝑥)] = lim
𝑥→𝑎

𝑓 (𝑥) ± lim
𝑥→𝑎

𝑔(𝑥)

2. lim
𝑥→𝑎

[ 𝑓 (𝑥) · 𝑔(𝑥)] = lim
𝑥→𝑎

𝑓 (𝑥) · lim
𝑥→𝑎

𝑔(𝑥)

3. Suppose lim
𝑥→𝑎

𝑔(𝑥) ≠ 0 then lim
𝑥→𝑎

𝑓 (𝑥 )
𝑔 (𝑥 ) =

lim
𝑥→𝑎

𝑓 (𝑥 )
lim
𝑥→𝑎

𝑔 (𝑥 )

4. Suppose lim
𝑥→𝑎

𝑓 (𝑥) = 0 and |𝑔(𝑥) | ≤ 𝑀 then lim
𝑥→𝑎

[ 𝑓 (𝑥) · 𝑔(𝑥)] = 0.

Proof. We proved the equivalent result for sequences, the result then follows by
theorem 5.8. ⊓⊔

Example 5.10. It follows from the definition of limit that lim
𝑥→𝑎

𝑥 = 𝑎. Similarly,

using the properties of limits (Corollary 5.9), we obtain lim
𝑥→𝑎

𝑥2 = 𝑎2. Proceeding
by induction, we conclude that lim

𝑥→𝑎
𝑥𝑛 = 𝑎𝑛, and hence for every polynomial

𝑝(𝑥) ∈ R[𝑥], lim
𝑥→𝑎

𝑝(𝑥) = 𝑝(𝑎). Similarly, for any rational function 𝑟 (𝑥) = 𝑝 (𝑥 )
𝑞 (𝑥 ) ,

if 𝑞(𝑎) ≠ 0 then lim
𝑥→𝑎

𝑝 (𝑥 )
𝑞 (𝑥 ) =

𝑝 (𝑎)
𝑞 (𝑎) .

Example 5.11. Consider the function:

𝑓 (𝑥) =
{
1, if 𝑥 ∈ Q
0, if 𝑥 ∈ R − Q

Then for any 𝑎 ∈ R, the limit lim
𝑥→𝑎

𝑓 (𝑥) doesn’t exist. Indeed, given any real
number 𝑎 we can construct two sequences 𝑥𝑛 ∈ Q and 𝑦𝑛 ∈ R−Q, with 𝑥𝑛 → 𝑎

and 𝑦𝑛 → 𝑎. Therefore, 𝑓 (𝑥𝑛) → 1 but 𝑓 (𝑦𝑛) → 0, so lim
𝑥→𝑎

𝑓 (𝑥) doesn’t exist.

Example 5.12. Consider the function 𝑓 : R−{0} → R given by 𝑓 (𝑥) = sin( 1
𝑥
).

We claim lim
𝑥→0

𝑓 (𝑥) doesn’t exist. It’s enough to find two sequences 𝑥𝑛 → 0 and

𝑦𝑛 → 0 such that 𝑓 (𝑥𝑛) and 𝑓 (𝑦𝑛) converge to different limits. Take 𝑥𝑛 = 1
𝑛𝜋

and 𝑦𝑛 = ( 𝜋2 + 2𝑛𝜋)−1, then 𝑓 (𝑥𝑛) → 0 but 𝑓 (𝑦𝑛) → 1.

5.2 One sided and infinite limits

Let 𝑋 ⊆ R and 𝑎 ∈ R. We say 𝑎 is accumulation point to the right (or one-sided
right accumulation point) if for every 𝜖 > 0, (𝑎, 𝑎 + 𝜖) ∩ 𝑋 ≠ ∅. Similarly, 𝑎 is
accumulation point to the left if for every 𝜖 > 0, (𝑎 − 𝜖, 𝑎) ∩ 𝑋 ≠ ∅.

We denote 𝑋 ′
+(𝑋 ′

−) , the set of all accumulation points to the right (left) of
𝑋 . The definition of limit can be extended in this scenario as well. For example,
let 𝑋 ⊆ R, 𝑓 : 𝑋 → R and 𝑎 ∈ 𝑋 ′

+, then we write
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lim
𝑥→𝑎+

𝑓 (𝑥) = 𝐿

If ∀𝜖 > 0, ∃𝛿 > 0, 0 < 𝑥 − 𝑎 < 𝛿 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖 . We define lim
𝑥→𝑎− 𝑓 (𝑥) = 𝐿

analogously.
Theorem 5.13. Let 𝑋 ⊆ R, 𝑓 : 𝑋 → R and 𝑎 ∈ 𝑋 ′. Then lim

𝑥→𝑎
𝑓 (𝑥) = 𝐿 if and

only if lim
𝑥→𝑎+

𝑓 (𝑥) = lim
𝑥→𝑎− 𝑓 (𝑥) = 𝐿.

Proof. The conditional implication is trivial, we prove the converse. Suppose
lim
𝑥→𝑎+

𝑓 (𝑥) = lim
𝑥→𝑎− 𝑓 (𝑥) = 𝐿. Then we can find 𝛿, 𝛾 > 0 such that given 𝜖 > 0,

0 < 𝑥 − 𝑎 < 𝛿 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖 and 0 < 𝑎 − 𝑥 < 𝛾 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖 . If we
set 𝛼 = min{𝛿, 𝛾}, then 0 < |𝑥 − 𝑎 | < 𝛼 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖 . ⊓⊔

Example 5.14. Consider the function sign : R − {0} → R given by

sign(𝑥) = 𝑥

|𝑥 | .

Then lim
𝑥→0−

sign(𝑥) = −1 but lim
𝑥→0+

sign(𝑥) = 1, so lim
𝑥→0

sign(𝑥) doesn’t exist.

Example 5.15. Consider the function 𝑓 (𝑥) : R→ R given by 𝑓 (𝑥) = 𝑒− 1
𝑥 .

Then lim
𝑥→0+

𝑓 (𝑥) = 0 but lim
𝑥→0−

𝑓 (𝑥) doesn’t exist.

Recall that a function is increasing if 𝑥 < 𝑦 ⇒ 𝑓 (𝑥) < 𝑓 (𝑦), nondecreasing
if 𝑥 ≤ 𝑦 ⇒ 𝑓 (𝑥) ≤ 𝑓 (𝑦). We define decreasing, nonincreasing in a similar way.
Finally we say a function is monotone if satisfies any of the above conditions.
Theorem 5.16. Let 𝑋 ⊆ R and 𝑓 : 𝑋 → R a bounded monotone function.
Given 𝑎 ∈ 𝑋 ′

+, 𝑏 ∈ 𝑋 ′
−, the one sided limits lim

𝑥→𝑎+
𝑓 (𝑥) and lim

𝑥→𝑏−
𝑓 (𝑥) exist.

Proof. Without loss of generality, suppose 𝑓 (𝑥) increasing. We prove lim
𝑥→𝑎+

𝑓 (𝑥)
exist, the other limit is analogous. Set 𝐿 := inf{ 𝑓 (𝑥); 𝑥 > 𝑎}. We claim
lim
𝑥→𝑎+

𝑓 (𝑥) = 𝐿. Indeed, given 𝜖 > 0 the number 𝜖+𝐿 is not a lower bound, hence
we can find 𝛿 > 0 such that 𝐿 ≤ 𝑓 (𝑎 + 𝛿) < 𝐿 + 𝜖 . Since 𝑓 (𝑥) is increasing, it
follows that 𝑎 < 𝑥 < 𝑎 + 𝛿 ⇒ 𝐿 ≤ 𝑓 (𝑥) < 𝐿 + 𝜖 , as required. ⊓⊔
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Let 𝑋 ⊆ R be a set unbounded from above. Given 𝑓 : 𝑋 → R we write

lim
𝑥→+∞

𝑓 (𝑥) = 𝐿,

if there is a number 𝐿 ∈ R such that

∀𝜖 > 0, ∃𝑀 > 0, 𝑀 < 𝑥 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝜖.

The limit lim
𝑥→−∞

𝑓 (𝑥) is defined analogously. Notice that both infinite limits
are, in a way, one sided limits. In particular, the limit of a sequence 𝑥𝑛 is an
infinite limit when we consider the sequence as a function 𝑥 : N → R, i.e.
lim 𝑥𝑛 = lim

𝑛→+∞
𝑥(𝑛).

Example 5.17. We have lim
𝑥→−∞

1
𝑛

= lim
𝑥→+∞

1
𝑛

= 0. Also, lim
𝑥→−∞

𝑒𝑥 = 0 but
lim

𝑥→+∞
𝑒𝑥 doesn’t exist.

Let 𝑋 ⊆ R, 𝑓 : 𝑋 → R and 𝑎 ∈ 𝑋 ′. We write

lim
𝑥→𝑎

𝑓 (𝑥) = +∞,

if ∀𝑀 > 0, ∃𝛿 > 0, 0 < |𝑥 − 𝑎 | < 𝜖 ⇒ 𝑓 (𝑥) > 𝑀.
The definition of lim

𝑥→𝑎
𝑓 (𝑥) = −∞, lim

𝑥→±∞
𝑓 (𝑥) = ±∞, and lim

𝑥→𝑎±
𝑓 (𝑥) = ±∞

can be given mutatis mutandis.
Example 5.18. With the definitions above we have, for example, lim

𝑥→+∞
𝑒𝑥 =

+∞, lim
𝑥→−∞

𝑥2 = +∞, lim
𝑥→2−

(
1

𝑥−2

)
= −∞, lim

𝑥→2+

(
1

𝑥−2

)
= +∞.

The theorem below can be proven using the same arguments we used to prove
their finite counterpart, so the proof will be ommitted.
Theorem 5.19. (Properties of infinite limits) Let 𝑋 ⊆ R, 𝑓 : 𝑋 → R and
𝑎 ∈ 𝑋 ′.

- (Uniqueness) If lim
𝑥→𝑎

𝑓 (𝑥) = +∞ then it’s impossible to have lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿
for 𝐿 ∈ R or 𝐿 = −∞.

- (Restriction) If lim
𝑥→𝑎

𝑓 (𝑥) = +∞, then for every 𝑌 ⊆ 𝑋 , if we set 𝑔(𝑥) =

𝑓 |𝑌 (𝑥), we still have lim
𝑥→𝑎

𝑔(𝑥) = +∞.
- (Unboundedness) If lim

𝑥→𝑎
𝑓 (𝑥) = +∞, then 𝑓 (𝑥) is not bounded in any

neighborhood of 𝑎 ∈ 𝑋 .
- (Monotonicity) If 𝑓 (𝑥) ≤ ℎ(𝑥) and lim

𝑥→𝑎
𝑓 (𝑥) = +∞, then lim

𝑥→𝑎
ℎ(𝑥) = +∞.

- (Preservation of the sign) If lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿 and lim
𝑥→𝑎

ℎ(𝑥) = +∞, then ∃𝛿 > 0
such that 0 < |𝑥 − 𝑎 | < 𝛿 ⇒ 𝑓 (𝑥) < ℎ(𝑥).

- (Equivalent definition) lim
𝑥→𝑎

𝑓 (𝑥) = +∞ if and only if for every sequence
𝑥𝑛 ∈ 𝑋 − {𝑎} with lim 𝑥𝑛 = 𝑎, we have lim

𝑛→∞
𝑓 (𝑥𝑛) = +∞.
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Let 𝑋 ⊆ R, 𝑓 : 𝑋 → R and 𝑎 ∈ 𝑋 ′. We say 𝑓 is bounded in a neighborhood
of 𝑎, if there is 𝑘, 𝛿 > 0 such that

0 < |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) | ≤ 𝑘

A number 𝑐 ∈ R is an adherent value of 𝑓 at 𝑎 if there exists a sequence
𝑥𝑛 ∈ 𝑋 such that lim 𝑥𝑛 = 𝑎 and lim 𝑓 (𝑥𝑛) = 𝑐. In particular, if a function has a
limit lim

𝑥→𝑎
𝑓 (𝑥) = 𝐿, then 𝐿 is the only adherent value.

Given 𝑎 ∈ 𝑋 ′ and 𝛿 > 0, we denote by 𝐼𝛿 the 𝛿−neighborhood around 𝑎
given by 𝐼𝛿 = 𝑋 − {𝑎} ∩ (𝑎 − 𝛿, 𝑎 + 𝛿).
Theorem 5.20. A number 𝑐 ∈ R is an adherent value of 𝑓 at 𝑎 if and only if for
every 𝛿 > 0 we have 𝑐 ∈ 𝑓 (𝐼𝛿).

Proof. Suppose 𝑐 ∈ R is an adherent value. Then 𝑎 = lim 𝑥𝑛 and 𝑐 = lim 𝑓 (𝑥𝑛).
Since 𝐼𝛿 ∋ 𝑎, 𝑥𝑛 ∈ 𝐼𝛿 for 𝑛 sufficiently large, so 𝑓 (𝑥𝑛) ∈ 𝑓 (𝐼𝛿). Conversely,
suppose 𝑐 ∈ 𝑓 (𝐼𝛿) for every 𝛿 > 0. We can take 𝛿 of the form 𝛿 = 1

𝑛
, for 𝑛 ∈ N,

to obtain a sequence 𝑥𝑛 ∈ 𝐼 1
𝑛
, such that | 𝑓 (𝑥𝑛) − 𝑐 | < 1

𝑛
. We conclude that

lim 𝑥𝑛 = 𝑎 and lim 𝑓 (𝑥𝑛) = 𝑐. ⊓⊔

Let’s denote the set of all adherent values at 𝑎 of a function 𝑓 by 𝐴𝑉 ( 𝑓 , 𝑎).

Corollary 5.21. 𝐴𝑉 ( 𝑓 , 𝑎) = ⋂
𝛿>0

𝑓 (𝐼𝛿)

Corollary 5.22. 𝐴𝑉 ( 𝑓 , 𝑎) is a closed set. If 𝑓 is bounded in a neighborhood of
𝑎, then 𝐴𝑉 ( 𝑓 , 𝑎) is compact and nonempty.

Example 5.23. Let 𝑓 (𝑥) = sin( 1
𝑥 )

𝑥
, whose graph is shown below.

Every 𝑐 ∈ R is an adherent value of 𝑓 at 0, that is, 𝐴𝑉 ( 𝑓 , 0) = R. Indeed, given
any 𝑐 ∈ R and an open intervals (𝑐 − 𝜖, 𝑐 + 𝜖) ∋ 𝑐 and 𝐼𝛿 := (−𝛿, 𝛿) ∋ 0, we
claim (𝑐− 𝜖, 𝑐+ 𝜖) ∩ 𝑓 (𝐼𝛿) ≠ ∅, or equivalently, 𝑐− 𝜖 < sin( 1

𝑎 )
𝑎

< 𝑐+ 𝜖 for some
𝑎 ∈ (−𝛿, 𝛿), which is easily true by the periodicity of sin(𝑥) and the behavior
of 1

𝑥
.

Example 5.24. Let 𝑓 (𝑥) = 1
𝑥
, then 𝐴𝑉 ( 𝑓 , 0) = ∅.
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According to corollary 5.22, if 𝑓 is bounded in a neighborhood of 𝑎, the set
𝐴𝑉 ( 𝑓 , 𝑎) ≠ ∅ is compact, hence has a maximum and minimum value.

We call the maximum value of 𝐴𝑉 ( 𝑓 , 𝑎) the limit superior of 𝑓 at 𝑎 and
denote it by

lim
𝑥→𝑎

sup 𝑓 (𝑥).

Similarly, the minimum value of 𝐴𝑉 ( 𝑓 , 𝑎) is called the limit inferior of 𝑓 at 𝑎
and denote it by

lim
𝑥→𝑎

inf 𝑓 (𝑥).

We use the convention that when 𝑓 is not bounded around 𝑎, we write
lim
𝑥→𝑎

sup 𝑓 (𝑥) = +∞ and lim
𝑥→𝑎

inf 𝑓 (𝑥) = −∞.

Example 5.25. Let 𝑓 (𝑥) = sin
(

1
𝑥

)
then 𝐴𝑉 ( 𝑓 , 0) = [−1, 1]. Indeed, for a

fixed 𝑎 ∈ [−1, 1] consider 𝑥𝑛 = (𝑎 + 2𝜋𝑛)−1, then 𝑓 (𝑥𝑛) = 𝑎. Therefore,
lim
𝑥→𝑎

inf 𝑓 (𝑥) = −1 and lim
𝑥→𝑎

sup 𝑓 (𝑥) = 1.

Theorem 5.26. Let 𝑓 be a bounded function in a neighborhood of 𝑎. Then given
𝜖 > 0, there exists 𝛿 > 0 such that

0 < |𝑥 − 𝑎 | < 𝛿 ⇒ lim
𝑥→𝑎

inf 𝑓 (𝑥) − 𝜖 < 𝑓 (𝑥) < lim
𝑥→𝑎

sup 𝑓 (𝑥) + 𝜖 .

Corollary 5.27. lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿 if and only if 𝑓 has only one adherent value at
𝑎, namely 𝐿 itself.

5.3 Continuity

Intuitively, a continuous function is a function whose graph has no gaps or holes.
More precisely, let 𝑓 : 𝑋 → R be a real valued function and 𝑎 ∈ 𝑋 . We say 𝑓

is continuous at 𝑎 if

∀𝜖 > 0, ∃𝛿 > 0; |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖

If 𝑓 is continuous for every 𝑎 ∈ 𝑋 we simply say 𝑓 is continuous.
Notice that if 𝑎 ∈ 𝑋 is an isolated point then any function 𝑓 : 𝑋 → R

is continuous at 𝑎. In particular, if 𝑋 ′ = ∅ then any function 𝑓 : 𝑋 → R is
continuous.

Example 5.28. Any function 𝑓 : Z→ R is continuous, since Z′ = ∅.

Theorem 5.29. If 𝑎 ∈ 𝑋 ′, then 𝑓 is continuous at 𝑎 if and only if lim
𝑥→𝑎

𝑓 (𝑥) =
𝑓 (𝑎).

Proof. Self-evident. ⊓⊔



92 5 Limits

By using the already proven properties of limits we conclude:
Theorem 5.30. If 𝑓 : 𝑋 → R is continuous then for any 𝑌 ⊆ 𝑋 the restriction
𝑓 |𝑌 is also continuous. Conversely, if 𝑌 = 𝐼 ∩ 𝑋 for some open interval 𝐼
containing a point 𝑎 ∈ 𝑋 , then if 𝑓 |𝑌 is continuous at 𝑎, 𝑓 is also continuous at
𝑎.

In other words, theorem 5.30 says that continuity is a local property. More
precisely, if 𝑓 coincides with a continuous function in a neighborhood of 𝑎 ∈ 𝑋 ,
then 𝑓 itself is continuous at 𝑎.
Corollary 5.31. If 𝑓 is continuous at 𝑎 ∈ 𝑋 , then 𝑓 is bounded in a neighbor-
hood of 𝑎.
Corollary 5.32. If 𝑓 , 𝑔 are continuous at 𝑎 ∈ 𝑋 and 𝑓 (𝑎) < 𝑔(𝑎), then
𝑓 (𝑥) < 𝑔(𝑥) in a neighborhood of 𝑎.
Corollary 5.33. If 𝑓 is continuous at 𝑎 ∈ 𝑋 and 𝑓 (𝑎) < 𝑘 ( 𝑓 (𝑎) > 𝑘), for
some 𝑘 ∈ R, then 𝑓 (𝑥) < 𝑘 ( 𝑓 (𝑥) > 𝑘) in a neighborhood of 𝑎.

Using the alternate definition of limit we can prove:
Theorem 5.34. 𝑓 is continuous at 𝑎 ∈ 𝑋 if and only if for every sequence
𝑥𝑛 → 𝑎, we have 𝑓 (𝑥𝑛) → 𝑓 (𝑎).
Theorem 5.35. 𝑓 , 𝑔 are continuous at 𝑎 ∈ 𝑋 , them 𝑓 + 𝑔, 𝑓 − 𝑔, and 𝑓 · 𝑔 are
also continuous at 𝑎. If 𝑔(𝑎) ≠ 0 then 𝑓 /𝑔 is also continuous at 𝑎. Moreover,
the composition of continuous function is also continuous.
Example 5.36. The function 𝑓 (𝑥) = 𝑥 is clearly continuous, hence its self-
product 𝑥𝑛 is also continuous, and so is any polynomial 𝑝(𝑥) = 𝑎𝑛𝑥

𝑛 + . . . +
𝑎1𝑥 + 𝑎0. A rational function 𝑝(𝑥)/𝑞(𝑥) is continuous at points where 𝑞(𝑥) ≠ 0.
Example 5.37. The function 𝑓 (𝑥) = |𝑥 | is continuous on the open interval
(0, +∞) since it is constant there, for the same reason it’s also continuous in
(−∞, 0). Finally, it’s continuous at 0, since lim

𝑥→0−
|𝑥 | = lim

𝑥→0+
|𝑥 | = 0. On the

other hand, the function defined by 𝑔(𝑥) = 𝑥
|𝑥 | , if 𝑥 ≠ 0, and 𝑔(0) = 1, is not

continuous at the origin since lim
𝑥→0−

𝑔(𝑥) = −1 ≠ lim
𝑥→0+

𝑔(𝑥) = 1.

Theorem 5.38. Suppose 𝑋 ⊆ 𝐴 ∪ 𝐵, where 𝐴, 𝐵 ⊆ R are closed sets. If the
function 𝑓 : 𝑋 → R satisfies 𝑓 |𝑋∩𝐴 is continuous and 𝑓 |𝑋∩𝐵 is continuous, then
𝑓 itself is continuous.

Proof. Let 𝑎 ∈ 𝑋 and 𝜖 > 0 be given. Suppose first 𝑎 ∈ 𝐴 ∩ 𝐵. Then there
are 𝛿, 𝛾 > 0 such that ∀𝑥 ∈ 𝑋 ∩ 𝐴, |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖 and
∀𝑥 ∈ 𝑋 ∩ 𝐵, |𝑥 − 𝑎 | < 𝛾 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖 . Set 𝛼 = min{𝛿, 𝛾}, then
∀𝑥 ∈ 𝑋, |𝑥 − 𝑎 | < 𝛼 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖 , which implies 𝑓 is continuous at 𝑎.

Now suppose 𝑎 ∈ 𝐴 but 𝑎 ∉ 𝐵. There exists 𝛿 > 0, such that ∀𝑥 ∈ 𝑋 ∩
𝐴, |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖 . Since 𝐵 is closed, 𝐵 = 𝐵, and we can find
𝛾 > 0 such that |𝑥 − 𝑎 | < 𝛾 ⇒ 𝑥 ∉ 𝐵. As before, if we set 𝛼 = min{𝛿, 𝛾}, then
∀𝑥 ∈ 𝑋, |𝑥 − 𝑎 | < 𝛼 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖 , as desired. The case 𝑎 ∉ 𝐴 but 𝑎 ∈ 𝐵
can be proven analogously. ⊓⊔
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Corollary 5.39. Suppose 𝑋 = 𝐴 ∪ 𝐵, where 𝐴, 𝐵 ⊆ R are closed sets. If the
restrictions 𝑓 |𝐴, 𝑓 |𝐵 of a function 𝑓 : 𝑋 → R are continuous, then 𝑓 itself is
continuous.

We can generalize the result above if we take the cover 𝐴 ∪ 𝐵 to be open.
In fact, a stronger result is valid. (The proof follows directly from theorem 5.30
and will be omitted.)
Theorem 5.40. (Sheaf property) Let 𝑋 ⊆ ⋃

𝜆∈𝐿
𝐴𝜆 be an open cover of 𝑋 . If the

restrictions 𝑓 |𝑋∩𝐴𝜆
of a function 𝑓 : 𝑋 → R are continuous, then 𝑓 itself is

continuous
Corollary 5.41. Suppose 𝑋 =

⋃
𝜆∈𝐿

𝐴𝜆, where each 𝐴𝜆 is open. If the restrictions

𝑓 |𝐴𝜆
of a function 𝑓 : 𝑋 → R are continuous, then 𝑓 itself is continuous

Example 5.42. Consider again 𝑓 (𝑥) = 𝑥
|𝑥 | but this time with domain 𝑋 =

(−∞, 0) ∪ (0, +∞). Then 𝑓 is continuous by the corollary above.
Let 𝑓 : 𝑋 → R be a real valued function and 𝑎 ∈ 𝑋 . If 𝑓 is not continuous at

𝑎, we say it is discontinuous at 𝑎.
Example 5.43. (Thomae’s function)The function 𝑓 : R→ R given by:

𝑓 (𝑥) =
{

1
𝑞
, if 𝑥 ∈ Q and 𝑥 = 𝑝

𝑞
, 𝑝 ∈ Z, 𝑞 ∈ N, gcd(𝑝, 𝑞) = 1

0, if 𝑥 ∈ R − Q

The graph of 𝑓 (𝑥) on the interval (0, 1) is shown below.

Notice that 𝑓 (𝑥) is periodic, since 𝑓 (𝑥 + 1) = 𝑓 (𝑥). We claim that 𝑓 is dis-
continuous at any 𝑎 ∈ Q. Indeed, we can find a sequence, say 𝑥𝑛 = 𝑎 +

√
2
𝑛

, of
irrational numbers, with 𝑥𝑛 → 𝑎 but 𝑓 (𝑥𝑛) → 0, since 𝑓 (𝑎) ≠ 0 in this case, 𝑓
can’t be continuous at 𝑎.

Surprisingly enough, 𝑓 is continuous at every 𝑎 ∉ Q. Equivalently, we must
have lim

𝑥→𝑎
𝑓 (𝑥) = 0. Since 𝑓 is periodic, it’s enough to prove the continuity for

𝑎 ∈ (0, 1) ∩ (R − Q).
Suppose 𝜖 > 0 is given. Using the Archimedean property of R, there is

𝑛 ∈ N such that 1
𝑛
< 𝜖 . Decompose (0, 1) into 𝑘 subintervals of length 1

𝑘
,
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for 𝑘 = 1, 2, . . . , 𝑛. Then ‘𝑎’ will be in one of these intervals, for each 𝑘 , say
𝑎 ∈ (𝑚𝑘

𝑘
,
𝑚𝑘+1
𝑘

). Let 𝛿𝑘 = min
{
|𝑎 − 𝑚𝑘

𝑘
|, |𝑎 − 𝑚𝑘+1

𝑘
|
}
, the minimum distance

between 𝑎 and the endpoints of (𝑚𝑘

𝑘
,
𝑚𝑘+1
𝑘

), and define 𝛿 := min
1≤𝑘≤𝑛

𝛿𝑘 .

Given 𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) if 𝑥 ∉ Q then 𝑓 (𝑥) = 0 < 𝜖 . Otherwise, 𝑥 =
𝑝

𝑞
and

by minimality of 𝛿, we must have 𝑞 > 𝑛, hence 𝑓 (𝑥) = 1
𝑞
< 1

𝑛
< 𝜖 and we

conclude that lim
𝑥→𝑎

𝑓 (𝑥) = 𝑓 (𝑎) = 0.

It’s impossible to have a function which is discontinuous at every irrational
number, see the exercises.

Example 5.44. If 𝑓 : R→ R is given by:

𝑓 (𝑥) =
{
1, if 𝑥 ∈ Q
0, if 𝑥 ∈ R − Q

Then 𝑓 is discontinuous at every 𝑎 ∈ R, since the limit lim
𝑥→𝑎

𝑓 (𝑥) doesn’t exist.

Example 5.45. Consider 𝑓 : R→ R given by 𝑓 (0) = 1 and 𝑓 (𝑥) = 𝑥3 − 𝑥
|𝑥 | if

𝑥 ≠ 0. Then 𝑓 is discontinuous at 0 only.

Example 5.46. Let 𝐾 be the Cantor set. Consider the function 𝑓 : [0, 1] → R
given by

𝑓 (𝑥) =
{
0, if 𝑥 ∈ 𝐾
1, if 𝑥 ∉ 𝐾

Then 𝑓 is discontinuous at every point 𝑎 ∈ 𝐾 and continuous at the open set
𝐾𝑐. Indeed, 𝑓 is constant, hence continuous, at every 𝑎 ∈ 𝐾𝑐.

Suppose now 𝑎 ∈ 𝐾 . Since every point of 𝐾 is an accumulation point, it’s
possible to find a sequence 𝑥𝑛 ∉ 𝐾 such that 𝑥𝑛 → 𝑎, hence 𝑓 (𝑥𝑛) → 1 ≠ 0, so
𝑓 is discontinuous at 𝑎.

Example 5.47. The function 𝑓 (0) = 𝑎 and 𝑓 (𝑥) = sin 1
𝑥

if 𝑥 ≠ 0 is discontinu-
ous at 0, regardless of 𝑎 ∈ R, since lim

𝑥→0
𝑓 (𝑥) doesn’t exist.
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Example 5.48. The function 𝑓 (0) = 0 and 𝑓 (𝑥) = sin 1
𝑥

1+𝑒 1
𝑥

if 𝑥 ≠ 0 is discontinu-
ous at 0, since lim

𝑥→0−
𝑓 (𝑥) doesn’t exist. In this case, lim

𝑥→0+
𝑓 (𝑥) = 0 however.

Example 5.49. The function 𝑓 (0) = 0 and 𝑓 (𝑥) = 1
1+𝑒 1

𝑥

if 𝑥 ≠ 0 is discontinu-
ous at 0, since lim

𝑥→0−
𝑓 (𝑥) = 1 but lim

𝑥→0+
𝑓 (𝑥) = 0.

Let 𝑓 : 𝑋 → R, 𝑎 ∈ 𝑋 and suppose 𝑓 is discontinuous at 𝑎. Then we say
𝑎 ∈ 𝑋 is a jump discontinuity, if both one sided limits lim

𝑥→𝑎+
𝑓 (𝑥) and lim

𝑥→𝑎− 𝑓 (𝑥)
exists but are different. If at least one of the one sided limits doesn’t exist, then
we say 𝑎 ∈ 𝑋 is an essential discontinuity.

Theorem 5.50. A monotone function 𝑓 : 𝑋 → R can’t have essential disconti-
nuities.

Proof. Suppose 𝑓 nondecreasing and 𝑎 ∈ 𝑋 . If 𝑥 + 𝛿 ∈ 𝑋 then 𝑓 is bounded in
[𝑥, 𝑥 + 𝛿] ∩ 𝑋 . The result then follows from theorem 5.16. ⊓⊔

Theorem 5.51. Let 𝑓 : 𝑋 → R be a function having only jump discontinuities.
Then the set of discontinuities of 𝑓 is countable.

Proof. Define the jump function 𝑗 (𝑥) : 𝑋 → R of 𝑓 by:
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𝑗 (𝑎) =


0, if 𝑎 is isolated.
| 𝑓 (𝑎) − lim

𝑥→𝑎+
𝑓 (𝑥) |, if 𝑎 ∈ 𝑋 ′

+ only.

| 𝑓 (𝑎) − lim
𝑥→𝑎− 𝑓 (𝑥) |, if 𝑎 ∈ 𝑋 ′

− only.
max{| 𝑓 (𝑎) − lim

𝑥→𝑎+
𝑓 (𝑥) |, | 𝑓 (𝑎) − lim

𝑥→𝑎− 𝑓 (𝑥) |}, if 𝑎 ∈ 𝑋 ′
+ ∩ 𝑋 ′

−.

Intuitively, 𝑗 (𝑥) measures the length of the ‘jump’ of 𝑓 (𝑥). Consider the set

𝐶𝑛 := {𝑥 ∈ 𝑋; 𝑗 (𝑥) ≥ 1
𝑛
}.

The set of discontinuities of 𝑓 (𝑥) is the set
⋃
𝑛=1

𝐶𝑛, hence if we can prove that

each 𝐶𝑛 is countable then we’re done. We claim that for each 𝑛 ∈ N, the set 𝐶𝑛

has only isolated points, hence it’s countable (see corollary 4.32).
Let 𝑎 ∈ 𝐶𝑛 and suppose 𝑎 ∈ 𝑋 ′

+. By using the definition of one sided limit, if
we set 𝐿 := lim

𝑥→𝑎+
𝑓 (𝑥) we can find 𝛿 > 0 such that 0 < 𝑥−𝑎 < 𝛿 ⇒ | 𝑓 (𝑥)−𝐿 | <

1
4𝑛 ⇒ 𝐿 − 1

4𝑛 < 𝑓 (𝑥) < 𝐿 + 1
4𝑛 , hence if 𝑥 ∈ (𝑎, 𝑎 + 𝛿) then 𝑗 (𝑥) ≤ 1

2𝑛 , which
is to say (𝑎, 𝑎 + 𝛿) ∩ 𝐶𝑛 = ∅. If 𝑎 ∉ 𝑋 ′

+, we can just choose 𝛿 > 0 such that
(𝑎, 𝑎 + 𝛿) ∩ 𝑋 = ∅. In any case, we can find 𝛿 > 0 such that (𝑎, 𝑎 + 𝛿) ∩𝐶𝑛 = ∅.
A similar argument implies we can find 𝛾 > 0 such that (𝑎 − 𝛾, 𝑎) ∩ 𝐶𝑛 = ∅.
We conclude that 𝑎 ∈ 𝐶𝑛 is isolated. ⊓⊔

Corollary 5.52. The set of discontinuities of a monotone function 𝑓 is countable.

5.4 Continuous functions defined on intervals

The next result highlights the fact that continuous functions can’t have gaps, in
other words, if two numbers 𝑎 ≠ 𝑏 are in the range, then [𝑎, 𝑏] is also in the
range.
Theorem 5.53. (Intermediate Value Theorem) Let 𝑓 : [𝑎, 𝑏] → R be a contin-
uous function and 𝑑 ∈ R be a number such that 𝑓 (𝑎) < 𝑑 < 𝑓 (𝑏). Then there
is 𝑐 ∈ [𝑎, 𝑏] such that 𝑑 = 𝑓 (𝑐).

Proof. Define 𝑋 = {𝑥 ∈ [𝑎, 𝑏]; 𝑓 (𝑥) < 𝑑}. This set is nonempty because
𝑓 (𝑎) < 𝑓 (𝑑), and due to the continuity of 𝑓 (𝑥), 𝑋 doesn’t have a maximum
element. Set 𝑐 = sup 𝑋 , then 𝑐 ∉ 𝑋 . However, since 𝑐 is an adherent value, there
is a sequence 𝑥𝑛 → 𝑐, which implies 𝑓 (𝑐) ≤ 𝑑. We conclude that 𝑓 (𝑐) = 𝑑. ⊓⊔

Corollary 5.54. Let 𝑓 : 𝐼 → R be a continuous function, where 𝐼 is an interval
(not necessarily bounded). If 𝑎, 𝑏 ∈ 𝐼 and 𝑓 (𝑎) < 𝑑 < 𝑓 (𝑏), then there exists
𝑐 ∈ 𝐼 such that 𝑓 (𝑐) = 𝑑.
Corollary 5.55. Let 𝑓 : 𝐼 → R be a continuous function, where 𝐼 is an interval.
Then 𝑓 (𝐼) is an interval.
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Proof. If we set 𝑐 = inf 𝑓 (𝑥) and 𝑑 = sup 𝑓 (𝑥) then 𝑓 (𝐼) is an interval with
endpoints 𝑐 and 𝑑 (not necessarily bounded, nor open/closed). ⊓⊔

Example 5.56. Let 𝑓 : 𝐼 → R be a continuous function such that 𝑓 (𝐼) ⊆ 𝑌 ,
where 𝑌 has empty interior. Then 𝑓 is constant. Indeed, it follows by 5.55 that
𝑓 (𝐼) is an interval, so it must be of the form [𝑐, 𝑐], otherwise, 𝑓 (𝐼) would have
an interior point. In particular, every continuous function 𝑓 : 𝐼 → Z is constant.

Example 5.57. Every polynomial 𝑝(𝑥) = 𝑎2𝑛−1𝑥
2𝑛−1+. . .+𝑎0 of odd degree has

at least one real root. Indeed, in this case 𝑝(𝑥) is a continuous function defined
on the interval (−∞, +∞), so its image is an interval. Since lim

𝑥→±∞
𝑝(𝑥) = ±∞,

that interval has to be (−∞, +∞), hence 𝑝(𝑥) is surjective.

A function 𝑓 : 𝑋 → 𝑌 is a homeomorphism, if 𝑓 is a continuous bĳection
having a continuous inverse 𝑓 −1.

Theorem 5.58. Let 𝑓 : 𝐼 → R be a continuous injective function defined on a
interval 𝐼. Then 𝑓 is monotone, and if we set 𝐽 = 𝑓 (𝐼), then 𝑓 : 𝐼 → 𝐽 is a
homeomorphism.

Proof. It’s enough to prove the result for 𝐼 = [𝑎, 𝑏]. Suppose 𝑓 (𝑎) < 𝑓 (𝑏),
we claim 𝑓 is increasing. Suppose not, that is, we can find 𝑐, 𝑑 ∈ [𝑎, 𝑏] such
that 𝑐 < 𝑑 but 𝑓 (𝑐) > 𝑓 (𝑑). Either 𝑓 (𝑎) < 𝑓 (𝑑) or 𝑓 (𝑎) > 𝑓 (𝑑). If 𝑓 (𝑎) <
𝑓 (𝑑) < 𝑓 (𝑐), by theorem 5.53, we can find 𝑝 ∈ (𝑎, 𝑐) such that 𝑓 (𝑝) = 𝑓 (𝑑),
a contradiction by the injectivity of 𝑓 . For the same reason we can’t have
𝑓 (𝑑) < 𝑓 (𝑎) < 𝑓 (𝑏). Hence, 𝑓 has to be increasing.

Using corollary 5.55, we see that 𝐽 is an interval, hence 𝑓 −1 : 𝐽 → 𝐼 is an
increasing function (since 𝑓 is) whose image is an interval. Suppose 𝑓 −1 is not
continuous at a point 𝑦 ∈ 𝐽, say 𝑀 := lim

𝑥→𝑦+
𝑓 −1(𝑥) ≠ 𝐿 := lim

𝑥→𝑦−
𝑓 −1(𝑥). Then

𝑓 −1(𝑐) ∈ (𝐿, 𝑀) and (𝐿, 𝑀) ∩ 𝐼 = { 𝑓 −1(𝑐)}, which implies 𝐼 has an isolated
point, a contradiction. ⊓⊔

Theorem 5.59. Let 𝑓 : 𝑋 → R be a continuous function. If 𝑋 is compact then
𝑓 (𝑋) is compact.

Proof. We claim 𝑓 (𝑋) is sequentially compact, which is equivalent to com-
pactness by theorem 4.44. Let 𝑦𝑛 = 𝑓 (𝑥𝑛) be a sequence in 𝑓 (𝑋), we claim it
has a converging subsequence. By the compactness of 𝑋 , there is a converging
subsequence 𝑥𝑛𝑘 → 𝑥 ∈ 𝑋 . If we set 𝑦𝑛𝑘 = 𝑓 (𝑥𝑛𝑘 ), then 𝑦𝑛𝑘 → 𝑓 (𝑥), since 𝑓
is continuous. ⊓⊔

Corollary 5.60. (Weierstrass Extreme Value Theorem) Let 𝑋 ⊆ R be compact
and 𝑓 : 𝑋 → R be a continuous function. Then 𝑓 achieves its maximum and
minimum value, that is to say, there are 𝑎, 𝑏 ∈ 𝑋 such that 𝑓 (𝑎) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑏)
for every 𝑥 ∈ 𝑋 .

Theorem 5.61. Let 𝑋 ⊆ R be compact and 𝑓 : 𝑋 → R be a continuous injective
function. If we set 𝑌 := 𝑓 (𝑋), then 𝑓 : 𝑋 → 𝑌 is a homeomorphism.
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Proof. Let 𝑦 ∈ 𝑌 , we claim 𝑓 −1 is continuous at 𝑦 = 𝑓 (𝑥). Suppose 𝑦𝑛 = 𝑓 (𝑥𝑛)
is a sequence of points in 𝑌 such that 𝑦𝑛 → 𝑦 = 𝑓 (𝑥), we claim 𝑥𝑛 → 𝑥. It’s
enough to prove that any converging subsequence of 𝑥𝑛 converges to 𝑥. Let 𝑥𝑛𝑘
be a converging subsequence, say 𝑥𝑛𝑘 → 𝑎 ∈ 𝑋 . Then 𝑦𝑛𝑘 → 𝑓 (𝑎), but since
𝑦𝑛𝑘 is a subsequence of 𝑦𝑛, it also converges to 𝑓 (𝑥), by the injectivity of 𝑓 we
deduce that 𝑎 = 𝑥. ⊓⊔

We say a function 𝑓 : 𝑋 → R is uniformly continuous if

∀𝜖 > 0, ∃𝛿 > 0 : ∀𝑥, 𝑦 ∈ 𝑋, |𝑥 − 𝑦 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑦) | < 𝜖

It follows that every uniformly continuous function is continuous. The converse
is false, as the example below illustrates.

Example 5.62. The function 𝑓 (𝑥) = 1
𝑥

is continuous on (0, +∞) but is not
uniformly continuous. Indeed, given 𝜖, 𝛿 > 0, take a point 0 < 𝑥 < min{𝛿, 1

3𝜖 }
and 𝑦 = 𝑥 + 𝛿

2 . Then |𝑥 − 𝑦 | < 𝛿 but

| 𝑓 (𝑥) − 𝑓 (𝑦) | =
�����1𝑥 − 1

𝑥 + 𝛿
2

����� = ���� 𝛿

𝑥(2𝑥 + 𝛿)

���� > ���� 𝛿3𝛿𝑥

���� > 𝜖.
Example 5.63. Linear functions 𝑓 (𝑥) = 𝑚𝑥 + 𝑏 are continuous. Indeed, given
𝜖 > 0 just take 𝛿 = 𝜖

|𝑚 | , so that |𝑥 − 𝑦 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑦) | = |𝑚(𝑥 − 𝑦) | ≤
|𝑚 | 𝜖

|𝑚 | = 𝜖 .

Example 5.64. A function 𝑓 : 𝑋 → R is called Lipschitz if there exists a
constant 𝐶 > 0 such that | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 |. Any Lipschitz function is
obviously uniformly continuous. For example, linear functions 𝑓 (𝑥) = 𝑚𝑥 + 𝑏
are Lipschitz, and if 𝑋 is bounded, 𝑓 (𝑥) = 𝑥𝑛 is Lipschitz.

Theorem 5.65. If 𝑓 : 𝑋 → R is uniformly continuous and 𝑥𝑛 is a Cauchy
sequence then 𝑓 (𝑥𝑛) is also Cauchy.

Corollary 5.66. If 𝑓 : 𝑋 → R is uniformly continuous and 𝑎 ∈ 𝑋 ′ then
lim
𝑥→𝑎

𝑓 (𝑥) exists.

Example 5.67. The functions 𝑓 (𝑥) = sin 1
𝑥

and 𝑔(𝑥) = 1
𝑥

can’t be uniformly
continuous because the limit when when 𝑥 approaches 0 doesn’t exist.

Theorem 5.68. Let 𝑋 ⊆ R be compact and 𝑓 : 𝑋 → R continuous then 𝑓 is
uniformly continuous.
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Exercises

1. Consider the following typo in the definition of limit:

∀𝜖 > 0, ∃𝛿 > 0, 𝑥 ∈ 𝑋, 0 < |𝑥 − 𝑎 | < 𝜖 ⇒ | 𝑓 (𝑥) − 𝐿 | < 𝛿.

Show that 𝑓 satisfies this condition if and only if it is bounded around each
interval centered in 𝑎 ∈ 𝑋 . In the affirmative case, 𝐿 can be any real number.

2. Let 𝑓 : R − {0} → R be given by

1

1 + 𝑒 1
𝑥

.

Compute lim
𝑥→0−

𝑓 (𝑥) and lim
𝑥→0+

𝑓 (𝑥).
3. Let 𝑓 (𝑥) = 𝑥 + 10 sin 𝑥. Show that lim

𝑥→+∞
𝑓 (𝑥) = +∞ and lim

𝑥→−∞
𝑓 (𝑥) = −∞.

4. Let 𝑓 : 𝑋 → R be a monotone function. Show that the set of points 𝑎 ∈ 𝑋 ′

such that lim
𝑥→𝑎− 𝑓 (𝑥) ≠ lim

𝑥→𝑎+
𝑓 (𝑥) is countable.

5. Let 𝑎 > 1 and 𝑓 : Q→ R given by 𝑓 ( 𝑝
𝑞
) = 𝑎

𝑝

𝑞 . Show that lim
𝑥→0

𝑓 (𝑥) = 1.
6. Let 𝑎 > 1 and 𝑓 : R→ R given by 𝑓 (𝑥) = 𝑎𝑥 . Show that lim

𝑥→+∞
𝑓 (𝑥) = +∞

and lim
𝑥→−∞

𝑓 (𝑥) = 0
7. Let 𝑝(𝑥) ∈ R[𝑥] be a polynomial. If the leading coefficient is positive, show

that lim
𝑥→+∞

𝑝(𝑥) = +∞.
8. Find the set of adherent points at 0 of the function 𝑓 : R−{0} → R be given

by 𝑓 (𝑥) = sin( 1
𝑥 )

1+𝑒 1
𝑥

9. If lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿, show that lim
𝑥→𝑎

| 𝑓 (𝑥) | = |𝐿 |, and that the set of adherent
points at 𝑎 is {𝐿}, {−𝐿} or {−𝐿, 𝐿}.

10. Given a nonempty compact set 𝐾 ⊆ R and a point 𝑎 ∈ R. Give an example
of a function 𝑓 : R→ R whose the set of adherent points at 𝑎 is 𝐾 .

11. Let 𝑓 : R→ R be a function given by

𝑓 (𝑥) =


𝑥, 𝑥 ∉ Q

0, 𝑥 = 0
𝑞, 𝑥 =

𝑝

𝑞
and 𝑔𝑐𝑑 (𝑝, 𝑞) = 1, 𝑝 > 0

Show that 𝑓 is unbounded in any non-degenerate interval.
12. Recall that the floor function ⌊𝑥⌋ : R→ Z is given by ⌊𝑥⌋ := largest integer

less than or equal to 𝑥. Show that if 𝑎, 𝑏 ∈ 𝑅 are positive numbers then

lim
𝑥→0+

𝑥

𝑎

⌊
𝑏

𝑥

⌋
=
𝑏

𝑎
and lim

𝑥→0+
𝑏

𝑥

⌊ 𝑥
𝑎

⌋
= 0
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13. Let 𝑓 , 𝑔 : 𝑋 → R be functions bounded in a neighborhood of 𝑎 ∈ 𝑋 ′. Show
that

lim
𝑥→𝑎

sup( 𝑓 + 𝑔) ≤ lim
𝑥→𝑎

sup 𝑓 (𝑥) + lim
𝑥→𝑎

sup 𝑔(𝑥),

and also that
lim
𝑥→𝑎

sup(− 𝑓 (𝑥)) = − lim
𝑥→𝑎

inf 𝑓 (𝑥)

14. Let 𝑓 : R→ R given by 𝑓 (𝑥) = 𝑥 + 𝑎𝑥 sin(𝑥). Show that

|𝑎 | < 1 ⇒ lim
𝑥→±∞

𝑓 (𝑥) = ±∞

15. Let 𝑓 : R→ R be continuous. Show that the zero set of 𝑓

𝑍 ( 𝑓 ) = {𝑥; 𝑓 (𝑥) = 0}

is a closed set. Conclude that if 𝑓 , 𝑔 : R→ R are continuous then the zero
set {𝑥; 𝑓 (𝑥) = 𝑔(𝑥)} is closed.

16. Let 𝑓 : 𝑋 → R be continuous. Show that for every 𝑘 ∈ R, the set of all
𝑥 ∈ 𝑋 such that 𝑓 (𝑥) ≤ 𝑘 is of the form 𝐶 ∩ 𝑋 , where 𝐶 is closed.

17. Let 𝑓 : 𝑋 → R be a function and 𝑋 ⊆ R an open set. Show that 𝑓 is
continuous if and only if the sets {𝑥; 𝑓 (𝑥) < 𝑐} and {𝑥; 𝑓 (𝑥) > 𝑐} are open
for every 𝑐 ∈ R.

18. Let 𝑓 : 𝑋 → R be a function and 𝑋 ⊆ R an open set. Show that 𝑓 is
continuous if and only if the set 𝑓 −1(𝐴) is open for every open 𝐴 ⊆ R.

19. Let 𝑓 : 𝑋 → R be a function and 𝑋 ⊆ R a closed set. Show that 𝑓
is continuous if and only if the set 𝑓 −1(𝐶) is closed for every closed set
𝐶 ⊆ R.

20. Let 𝑆 ⊆ R be nonempty. Consider the function 𝑓 : R→ R given by

𝑓 (𝑥) = inf{|𝑥 − 𝑠 |; 𝑠 ∈ 𝑆}

Show that 𝑓 is Lipschitz: ∀𝑥, 𝑦 ∈ R⇒ | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ |𝑥 − 𝑦 |.
21. Let 𝑋 ⊆ R be a closed set and 𝑓 : 𝑋 → R continuous. Show that there exist

a continuous function 𝑔 : R→ R such that 𝑔 |𝑋 = 𝑓 .
22. Give an example of a bĳective function 𝑓 : R→ R which is discontinuous

at every 𝑎 ∈ R.
23. Show that there is no continuous function 𝑓 : R → R that takes every

rational number to an irrational number, and vice-versa.
24. Let 𝐴 be the set of all nonnegative algebraic numbers, and 𝐵 be the set of

negative transcendental numbers. Let 𝑓 : 𝐴 ∪ 𝐵 → [0, +∞) be a function
defined by 𝑓 (𝑥) = 𝑥2. Show that 𝑓 is a continuous bĳection, whose inverse
𝑓 −1 is discontinuous at every point, except zero.

25. (Brouwer Fixed Point Theorem) Let 𝑓 : [𝑎, 𝑏] → [𝑎, 𝑏] be a continuous
function. Show that there exists a point 𝑥 ∈ [𝑎, 𝑏] such that 𝑓 (𝑥) = 𝑥. [We
call such point a ‘fixed point’.]
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26. Let 𝑓 : R→ R be continuous. If for every open set 𝐴 ⊆ R, the image 𝑓 (𝐴)
is open, then 𝑓 is injective, hence monotone.

27. Fix 𝑋 ⊆ R. If every continuous function defined on 𝑋 is bounded then 𝑋 is
compact.

28. Let 𝑓 : R → R be continuous. Suppose lim
𝑥→−∞

𝑓 (𝑥) = lim
𝑥→+∞

𝑓 (𝑥) = +∞.
Then 𝑓 achieves its minimum value, i.e. there is 𝑎 ∈ R such that 𝑓 (𝑎) ≤
𝑓 (𝑥),∀𝑥 ∈ R.

29. Show that 𝑓 : (−1, 1) → R given by 𝑓 (𝑥) = 𝑥
1−|𝑥 | is a homeomorphism.

30. Classify all intervals of R up to homeomorphism. For example, all open in-
tervals, whether or not bounded, are homeomorphic, hence should represent
the same object.

31. Show that the inverse of 𝑓 given in exercise 15, is uniformly continuous.
(Notice that 𝑓 isn’t)

32. Show that 𝑓 : R → R given by 𝑓 (𝑥) = sin 𝑥 is uniformly continuous, but
𝑔(𝑥) = sin 𝑥2 isn’t.

33. Show that a polynomial 𝑝 : R → R is uniformly continuous if and only if
has degree at most one.

34. Show that 𝑓 (𝑥) = 𝑥𝑛 is Lipschitz in any bounded set. Moreover, prove that
if 𝑛 > 1 and 𝑓 is defined on an unbounded interval, then 𝑓 is not even
uniformly continuous.

35. Give an example of sets 𝐴, 𝐵 open and a continuous function 𝑓 : 𝐴∪𝐵 → R
such that 𝑓 |𝐴, 𝑓 |𝐵 are uniformly continuous but 𝑓 is not.

36. Given a function 𝑓 : 𝑋 → R. Suppose that for every 𝜖 > 0, there exists
𝑔 : 𝑋 → R continuous, such that ∀𝑥 ∈ 𝑋, | 𝑓 (𝑥) − 𝑔(𝑥) | < 𝜖 . Show that 𝑓
is continuous.





Chapter 6
Derivatives

6.1 Definition and first properties

Let 𝑋 ⊆ R, 𝑎 ∈ 𝑋 ∩ 𝑋 ′, and 𝑓 : 𝑋 → R be a real valued function. We say 𝑓 is
differentiable at 𝑎 ∈ 𝑋 if the following limit exists:

𝑓 ′(𝑎) := lim
𝑥→𝑎

𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 (6.1)

The number 𝑓 ′(𝑎) is called the derivative of 𝑓 at 𝑎. If 𝑓 is differentiable at every
𝑎 ∈ 𝑋 , we simply say 𝑓 is differentiable (in 𝑋).

Intuitively speaking, for 𝑥 ≠ 𝑎, the number 𝑓 (𝑥 )− 𝑓 (𝑎)
𝑥−𝑎 is the slope of the

secant line connecting the points (𝑥, 𝑓 (𝑥)) and (𝑎, 𝑓 (𝑎)), hence when 𝑥 → 𝑎,
this number becomes the slope of the tangent line.

Similarly to one-sided limits, we can define one-sided derivativesderivative!one-
sided, 𝑓 ′+ (𝑎) := lim

𝑥→𝑎+
𝑓 (𝑥 )− 𝑓 (𝑎)

𝑥−𝑎 , if 𝑎 ∈ 𝑋 ∩ 𝑋 ′
+, and 𝑓 ′− (𝑎) := lim

𝑥→𝑎−
𝑓 (𝑥 )− 𝑓 (𝑎)

𝑥−𝑎 if
𝑋 ∩ 𝑋 ′

−. We can easily see that 𝑓 ′(𝑎) exists for some 𝑎 ∈ 𝑋 ∩ 𝑋 ′
+ ∩ 𝑋 ′

− if and
only if 𝑓 ′+ (𝑎) and 𝑓 ′− (𝑎) exist and 𝑓 ′− (𝑎) = 𝑓 ′+ (𝑎). In particular, a function is not
differentiable if its graph has sharp corners, since this implies 𝑓 ′− (𝑎) ≠ 𝑓 ′+ (𝑎) at
the corner.

If we set ℎ := 𝑥 − 𝑎 in equation 6.1, then we can see that 𝑓 ′(𝑎) can be
equivalently defined by

𝑓 ′(𝑎) := lim
ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ

. (6.2)

Sometimes the latter definition is more convenient for computational purposes.
If 𝑎 ∈ 𝑋 ′

+ but 𝑎 ∉ 𝑋 ′
−, and 𝑓 ′+ (𝑎) exists, we can set 𝑓 ′(𝑎) := 𝑓 ′+ (𝑎) and consider

𝑓 to be differentiable at 𝑎. A similar convention holds for 𝑎 ∈ 𝑋 ′
−. According

to this convention, the function 𝑓 : [𝑎, 𝑏) → [𝑎, 𝑏), given by 𝑓 (𝑥) = 𝑥, is
differentiable.

103
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Example 6.1. Let 𝑓 : R → R be linear, 𝑓 (𝑥) = 𝑚𝑥 + 𝑏. Then 𝑓 ′(𝑥) = 𝑚. In
particular, if 𝑚 = 0 and 𝑓 (𝑥) = 𝑏 is constant, then 𝑓 ′(𝑥) = 0.

Example 6.2. Consider 𝑓 (𝑥) = |𝑥 |. Using the definition of one-sided derivatives
we obtain 𝑓 ′+ (0) = 1 and 𝑓 ′− (0) = −1. Therefore, 𝑓 is not differentiable at 0. On
the other hand, we easily see that 𝑓 ′(𝑥) = 1, if 𝑥 > 0, and 𝑓 ′(𝑥) = −1, if 𝑥 < 0.

Example 6.3. Let 𝑓 : [0, +∞) → R be defined by 𝑓 (𝑥) =
√
𝑥. Using equation

6.2, for 𝑥 > 0, we obtain:

𝑓 ′(𝑥) = lim
ℎ→0

√
𝑥 + ℎ −

√
𝑥

ℎ
= lim

ℎ→0

ℎ

ℎ(
√
𝑥 + ℎ +

√
𝑥)

=
1
2𝑥

On the other hand, at 𝑥 = 0 the quotient
√
ℎ
ℎ

= 1√
ℎ
→ +∞ as ℎ → 0+, hence

𝑓 ′(0) doesn’t exits. Intuitively, this is clear since the tangent line being a vertical
line has ‘infinite’ slope.

Example 6.4. (Sawtooth function)Let 𝑓 : R→ R be defined by

𝑓 (𝑥) = inf{|𝑥 − 𝑛|; 𝑛 ∈ Z}

.

Notice that the graph of 𝑓 has sharp corners at every 𝑛, 𝑛2 , for 𝑛 ∈ Z, hence it’s
not differentiable at those points. Otherwise, the function is differentiable with
𝑓 ′(𝑥) = ±1, depending whether or not the fractional part of 𝑓 (𝑥) is less than
0.5.
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Example 6.5. Let 𝑓 : R → R be defined by 𝑓 (0) = 0 and 𝑓 (𝑥) = 𝑥 +
2𝑥2 sin(1/𝑥), if 𝑥 ≠ 0. Despite this seemly complicated definition, this function
is indeed differentiable everywhere and 𝑓 ′(𝑥) = 1 − 2 cos(1/𝑥) + 4𝑥 sin(1/𝑥)

Example 6.6. (Weierstrass function) Given 0 < 𝑎 < 1 and 𝑏 ∈ N, such that

𝑎𝑏 > 1+ 3
2𝜋. Let 𝑓 : R→ R be defined by 𝑓 (𝑥) =

∞∑
𝑛=1

𝑎𝑛 cos(𝑏𝑛𝜋𝑥). The figure

below is the graph of 𝑓 (𝑥). It is an example of a continuous function that is
nowhere differentiable.

Moreover, the graph of 𝑓 (𝑥) is self-similar if we zoom in, in the sense, that if
we restrict the the domain of 𝑓 (𝑥) to [− 1

𝑛
, 1
𝑛
] and take 𝑛 bigger and bigger, the

shape of the graph doesn’t change. We will prove these claims later, when we
discuss series of functions.
Theorem 6.7. A real valued function 𝑓 : 𝑋 → R is differentiable at 𝑎 ∈ 𝑋 if
and only if there is number 𝐶 ∈ R and a real valued function 𝑟 (𝑥), such that if
𝑎 + ℎ ∈ 𝑋:

𝑓 (𝑎 + ℎ) = 𝑓 (𝑎) + 𝐶ℎ + 𝑟 (ℎ), (6.3)

and 𝑟 (𝑥) satisfies lim
ℎ→0

𝑟 (ℎ)
ℎ

= 0. Moreover, 𝐶 = 𝑓 ′(𝑎).

Proof. The implication is clear. We prove the converse. Suppose that there is
𝐶 ∈ R satisfying (6.3). Then

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎) − 𝑟 (ℎ) = 𝐶ℎ (6.4)

Dividing both sides by ℎ and taking the limit when ℎ → 0 we obtain
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lim
ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ

= 𝐶 ∈ R,

as required. ⊓⊔

The theorem above says that 𝑓 is differentiable at 𝑎 if and only if in a
neighborhood of 𝑎, 𝑓 can be approximated by the linear function 𝑝(𝑥) = 𝑓 ′(𝑎)𝑥+
𝑓 (𝑎) with error 𝑟 (𝑥) that goes to zero faster than 𝑔(𝑥) = 𝑥. We will see soon that
the more derivatives 𝑓 has, the better we can make this approximation using a
polynomial 𝑝(𝑥) whose degree is equal to the number of derivatives of 𝑓 .

If 𝑓 : 𝑋 → R differentiable at 𝑎 ∈ 𝑋 ∩ 𝑋 ′, we define the differential at 𝑎,
denoted by 𝑑𝑓𝑎 : R→ R, as the linear transformation given by

𝑑𝑓𝑎 (ℎ) = 𝑓 ′(𝑎)ℎ. (6.5)

In this notation, equation 6.3 becomes

𝑓 (𝑎 + ℎ) = 𝑓 (𝑎) + 𝑑𝑓𝑎 (ℎ) + 𝑟 (ℎ). (6.6)

Theorem 6.8. If the 𝑓 : 𝑋 → R is differentiable at 𝑎 ∈ 𝑋 then 𝑓 is continuous
at 𝑎 ∈ 𝑋 .

Proof. Indeed, we have

lim
𝑥→𝑎

[ 𝑓 (𝑥) − 𝑓 (𝑎)] = lim
𝑥→𝑎

[
𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 (𝑥 − 𝑎)

]
= lim

𝑥→𝑎

[
𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎

]
· lim
𝑥→𝑎

(𝑥 − 𝑎)

= 𝑓 ′(𝑎) · 0 = 0.
(6.7)

∴ 𝑓 is continuous at 𝑎. ⊓⊔

The theorem below follows directly from the definition of derivative and the
properties of limits we have already proved.

Theorem 6.9. (Properties of derivatives) If 𝑓 , 𝑔 : 𝑋 → R are differentiable at
𝑎 ∈ 𝑋 ∩ 𝑋 ′ then 𝑓 ± 𝑔, 𝑓 · 𝑔, 𝑓 /𝑔 (if 𝑔′(𝑎) ≠ 0) are also differentiable at 𝑎.
Moreover,

( 𝑓 ± 𝑔)′(𝑎) = 𝑓 ′(𝑎) ± 𝑔′(𝑎)
( 𝑓 · 𝑔)′(𝑎) = 𝑓 ′(𝑎) · 𝑔(𝑎) + 𝑓 (𝑎) · 𝑔′(𝑎)(
𝑓

𝑔

) ′
(𝑎) = 𝑓 ′(𝑎)𝑔(𝑎) − 𝑓 (𝑎)𝑔′(𝑎)

𝑔(𝑎)2 .

(6.8)

Theorem 6.10. (The Chain Rule) Let 𝑓 : 𝑋 → R and 𝑔 : 𝑌 → R be real
valued functions, such that 𝑓 (𝑋) ⊆ 𝑌 . If 𝑓 is differentiable at 𝑎 ∈ 𝑋 , and 𝑔 is
differentiable at 𝑏 := 𝑓 (𝑎), then 𝑔 ◦ 𝑓 : 𝑋 → R is differentiable at 𝑎, moreover
(𝑔 ◦ 𝑓 )′(𝑎) = 𝑔′(𝑏) 𝑓 ′(𝑎).
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Proof. By hypothesis, we have

(𝑔 ◦ 𝑓 ) (𝑎 + ℎ) = 𝑔[ 𝑓 (𝑎 + ℎ)] = 𝑔[ 𝑓 (𝑎) + 𝑓 ′(𝑎)ℎ + 𝑟 (ℎ)]
= 𝑔[ 𝑓 (𝑎)] + 𝑔′ [ 𝑓 (𝑎)] [ 𝑓 ′(𝑎)ℎ + 𝑟 (ℎ)] + 𝑠( 𝑓 ′(𝑎)ℎ + 𝑟 (ℎ))
= 𝑔(𝑏) + 𝑔′(𝑏) [ 𝑓 ′(𝑎)ℎ] + 𝑔′(𝑏) [𝑟 (ℎ)] + 𝑠( 𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)).

Since

lim
ℎ→0

𝑔′(𝑏) [𝑟 (ℎ)] + 𝑠( 𝑓 (𝑎 + ℎ) − 𝑓 (𝑎))
ℎ

= 𝑔′(𝑏) lim
ℎ→0

𝑟 (ℎ)
ℎ

+ lim
ℎ→0

𝑠( 𝑓 (𝑎 + ℎ) − 𝑓 (𝑎))
ℎ

= 0

The proof is complete by theorem 6.7. ⊓⊔

Corollary 6.11. Let 𝑓 : 𝑋 → 𝑌 ⊆ R be a bĳective real valued functions. If 𝑓 is
differentiable at 𝑎 ∈ 𝑋 , and 𝑓 −1 : 𝑌 → 𝑋 is continuous at 𝑏 := 𝑓 (𝑎), then 𝑓 −1

is differentiable at 𝑏 if and only if 𝑓 ′(𝑎) ≠ 0, moreover, if that’s the case, then
( 𝑓 −1)′(𝑏) = 1

𝑓 ′ (𝑎) .

Proof. If 𝑓 −1 is differentiable at 𝑏, we can apply the Chain rule to 1 = ( 𝑓 −1 ◦
𝑓 )′(𝑎) = ( 𝑓 −1)′(𝑏) 𝑓 ′(𝑎). Conversely, suppose 𝑓 ′(𝑎) ≠ 0, set 𝑔(𝑦) := 𝑓 −1(𝑦).
Then

lim
𝑦→𝑏

𝑔(𝑦) − 𝑔(𝑏)
𝑦 − 𝑏 = lim

𝑦→𝑏

𝑔(𝑦) − 𝑎
𝑓 [𝑔(𝑦)] − 𝑓 (𝑎) = lim

𝑦→𝑏

(
𝑓 [𝑔(𝑦)] − 𝑓 (𝑎)
𝑔(𝑦) − 𝑎

)−1
=

1
𝑓 ′(𝑎)
(6.9)

∴ 𝑔′(𝑏) = 1
𝑓 ′ (𝑎) and the theorem is proved. ⊓⊔

Example 6.12. (The Sigmoid function) Consider the function 𝑓 : R→ R given
by 𝑓 (𝑥) = 1

1+𝑒−𝑥 , whose graph is shown below.

Using the chain rule, we have that

𝑓 ′(𝑥) = − 1
(1 + 𝑒−𝑥)2 (−𝑒

−𝑥) = 𝑒−𝑥

(1 + 𝑒−𝑥)2
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6.2 Maximum and minimum points

The derivative of 𝑓 : 𝑋 → R at point 𝑎 ∈ 𝑋 tells us crucial information about
the behavior of the function in a neighborhood of 𝑎.

Let 𝑓 : 𝑋 → R be a real valued function and 𝑎 ∈ 𝑋 . We say 𝑓 has a local
maximum at 𝑎 if there exists 𝛿 > 0, such that 𝑥 ∈ (𝑎− 𝛿, 𝑎 + 𝛿) ⇒ 𝑓 (𝑥) ≤ 𝑓 (𝑎).
If the strict inequality 𝑓 (𝑥) < 𝑓 (𝑎) is true, then 𝑎 is called strict local maximum.
Similar definitions are given to local minimum and strict local minimum.
Example 6.13. The function cos : R → R has (strict) local maxima at points
of the form 𝑎 = 2𝜋𝑛, 𝑛 ∈ Z.

Similarly, cos 𝑥 has (strict) local minima at points of the form (2𝑛− 1)𝜋, 𝑛 ∈ Z.
Example 6.14. The constant function given by 𝑓 (𝑥) = 𝐶 has (non-strict) local
maxima and minima at every point of its domain.
Example 6.15. Consider the function 𝑓 : R → R given by 𝑓 (0) = 0 and
𝑓 (𝑥) = 𝑥2(1 + sin 1

𝑥
), whose graph is shown below.

By definition, 𝑓 (𝑥) ≥ 0, ∀𝑥 ∈ R. Moreover, any neighborhood of 0 contains
points whose image is 0. Hence, the point 0 is a (non-strict) local minimum.
Theorem 6.16. Let 𝑓 : 𝑋 → R be differentiable from the right at 𝑎 ∈ 𝑋 ∩ 𝑋 ′

+,
i.e. 𝑓 ′+ (𝑎) exists. If 𝑓 ′+ (𝑎) > 0 then we can find 𝛿 > 0 such that 𝑥 ∈ (𝑎, 𝑎 + 𝛿) ⇒
𝑓 (𝑥) > 𝑓 (𝑎). Similarly, if 𝑓 ′+ (𝑎) < 0 then ∃𝛿 > 0 : 𝑥 ∈ (𝑎, 𝑎 + 𝛿) ⇒ 𝑓 (𝑥) <
𝑓 (𝑎).

Proof. Follows directly from Corollary 5.6. ⊓⊔
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A similar result is valid in the case 𝑓 ′− (𝑎) > 0 or 𝑓 ′− (𝑎) < 0.

Corollary 6.17. Let 𝑓 : 𝑋 → R be differentiable at 𝑎 ∈ 𝑋 ∩ 𝑋 ′
+ ∩ 𝑋 ′

−.
If 𝑓 ′(𝑎) > 0 then we can find 𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝑋 , we have
𝑎 − 𝛿 < 𝑥 < 𝑎 < 𝑦 < 𝑎 + 𝛿 ⇒ 𝑓 (𝑥) < 𝑓 (𝑎) < 𝑓 (𝑦).

Notice that the corollary above is not saying that 𝑓 is locally increasing.

Corollary 6.18. Let 𝑓 : 𝑋 → R be differentiable at 𝑎 ∈ 𝑋 ∩ 𝑋 ′
+ ∩ 𝑋 ′

−. If 𝑓 has
a local maximum or minimum at 𝑎 ∈ 𝑋 then 𝑓 ′(𝑎) = 0.

Example 6.19. The converse of Corollary 6.18 is false. The function 𝑓 (𝑥) = 𝑥3

and 𝑎 = 0 gives a counter-example.

Example 6.20. Consider the continuous function 𝑓 (𝑥) = 𝑥2 sin 1
𝑥
+ 𝑥

2 if 𝑥 ≠ 0
and 𝑓 (0) = 0.

We have 𝑓 ′(0) = 1
2 > 0, but 𝑓 is not increasing in any neighborhood 𝐼 of 0.

Indeed, 𝑓 ′(𝑥) = 2𝑥 sin 1
𝑥
− cos 1

𝑥
+ 1

2 , so we can pick 𝑥 ∈ 𝐼 sufficiently small
such that sin 1

𝑥
= 0 and cos 1

𝑥
= 1, for this 𝑥 ∈ 𝐼 we have 𝑓 ′(𝑥) = − 1

2 < 0, so 𝑓

can’t be increasing in 𝐼.

6.3 Derivative as a function

Let 𝑓 : 𝐼 → R be a differentiable function defined on a interval 𝐼. We associate
to 𝑓 its derivative function 𝑓 ′ : 𝐼 → R, whose value at each 𝑥 ∈ 𝐼 is 𝑓 ′(𝑥).

When 𝑓 ′ is continuous, we say 𝑓 is continuously differentiable. The set of
all continuously differentiable functions on a interval 𝐼 is denoted by 𝐶1(𝐼). In
case 𝐼 = (−∞, +∞), we simply write 𝑓 ∈ 𝐶1 and say 𝑓 is of class 𝐶1.

Example 6.21. The function defined by 𝑓 (𝑥) = 𝑥2 sin 1
𝑥

if 𝑥 ≠ 0 and 𝑓 (0) = 0
is differentiable but 𝑓 ∉ 𝐶1.
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At 𝑥 = 0 we have 𝑓 ′(0) = 0. However, 𝑓 ′(𝑥) = 2𝑥 sin 1
𝑥
− cos 1

𝑥
and lim

𝑥→0
𝑓 ′(𝑥)

doesn’t exists. Therefore, 𝑓 ′ is not continuous at 0.

If 𝑓 : 𝐼 → R is of class 𝐶1, then we can apply the Intermediate Value
Theorem to 𝑓 ′ to conclude that: Given 𝑎, 𝑏 ∈ 𝐼 such that 𝑓 ′(𝑎) < 𝑦 < 𝑓 ′(𝑏) for
some 𝑦 ∈ R, then there exists 𝑐 ∈ 𝐼 such that 𝑦 = 𝑓 ′(𝑐).

The following theorem strengthens the above by removing the continuity
assumption of 𝑓 ′.

Theorem 6.22. (Darboux’s theorem) Let 𝑓 : [𝑎, 𝑏] → R be differentiable. If
𝑓 ′(𝑎) < 𝑦 < 𝑓 ′(𝑏), then there exists 𝑐 ∈ 𝐼 such that 𝑦 = 𝑓 ′(𝑐).

Proof. It suffices to prove the result when 𝑦 = 0 and then consider 𝑔(𝑥) =

𝑓 (𝑥) − 𝑦𝑥. From the fact that 𝑓 ′(𝑎) < 0 < 𝑓 ′(𝑏), we know that 𝑓 (𝑥) < 𝑓 (𝑎)
in a neighborhood of 𝑎, and 𝑓 (𝑥) < 𝑓 (𝑏) in a neighborhood of 𝑏. That implies
that 𝑓 achieves its minimum (see corollary 5.60) at a point 𝑐 ∈ (𝑎, 𝑏), by 6.18
we must have 𝑓 ′(𝑐) = 0. ⊓⊔

Example 6.23. The corollary above says that the Dirichlet function 𝑓 (𝑥) = 1,
if 𝑥 ∈ Q ∩ [0, 1], 𝑓 (𝑥) = 0 if 𝑥 ∈ (R − Q) ∩ [0, 1] can’t be the derivative of a
function defined on [0, 1].
Corollary 6.24. Let 𝑓 : 𝐼 → R be a differentiable function on an interval 𝐼.
Then 𝑓 ′ doesn’t have jump discontinuities.

Proof. We claim that given a point 𝑎 ∈ 𝐼, if the one sided limits lim
𝑥→𝑎+

𝑓 ′(𝑥), lim
𝑥→𝑎− 𝑓

′(𝑥)
exist, then 𝑓 ′(𝑥) is continuous at 𝑎. Suppose 𝑅 = lim

𝑥→𝑎+
𝑓 ′(𝑥) exists but

𝑅 ≠ 𝑓 ′(𝑎), say 𝑅 > 𝑓 ′(𝑎). Take 𝑦 ∈ R such that 𝑓 ′(𝑎) < 𝑦 < 𝑅. Then
there exists 𝛿 > 0 such that 𝑥 ∈ (𝑎, 𝑎 + 𝛿) ⇒ 𝑓 ′(𝑥) > 𝑦. In particular,
𝑓 ′(𝑎) < 𝑅 < 𝑓 ′(𝑎 + 𝛿

2 ) but there is no 𝑐 ∈ (𝑎, 𝑎 + 𝛿
2 ) such that 𝑓 ′(𝑐) = 𝑅,

a contradiction. Using a similar argument, we conclude the equivalent result if
lim
𝑥→𝑎− 𝑓

′(𝑥) exists. ⊓⊔

Example 6.25. The corollary above says that the floor function 𝑓 (𝑥) = ⌊𝑥⌋,
can’t be the derivative of a function defined on R.
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Theorem 6.26. (Rolle) Let 𝑓 : [𝑎, 𝑏] → R be continuous satisfying 𝑓 (𝑎) =

𝑓 (𝑏). If 𝑓 is differentiable on (𝑎, 𝑏) then there exists 𝑐 ∈ (𝑎, 𝑏) such that
𝑓 ′(𝑐) = 0.

Proof. If 𝑓 is constant then 𝑓 ′(𝑥) = 0, so suppose 𝑓 not constant. Since 𝑓 is
continuous on [𝑎, 𝑏], it achieves its maximum and minimum in [𝑎, 𝑏]. Since
𝑓 (𝑎) = 𝑓 (𝑏), the maximum/minimum can’t be at an endpoint, otherwise the
function would be constant. Hence, the function has at least one maximum or
minimum in the interior (𝑎, 𝑏), at that point the derivative must be zero by
Corollary 6.18. ⊓⊔

Notice that we didn’t use 𝑓 ′(𝑎) or 𝑓 ′(𝑏) in the proof, hence the requirement
that f be differentiable in (𝑎, 𝑏) and not in [𝑎, 𝑏].
Example 6.27. The absolute value function 𝑓 (𝑥) = |𝑥 | when defined on [−1, 1]
is continuous and satisfies 𝑓 (−1) = 𝑓 (1), but there is no point 𝑐 ∈ [−1, 1] such
that 𝑓 ′(𝑐) = 0. This is not a counter-example to Theorem 6.26, because 𝑓 is not
differentiable at 0 ∈ [−1, 1].

Example 6.28. The function 𝑓 (𝑥) =
√

1 − 𝑥2 is continuous on [0, 1] but it’s dif-
ferentiable only in (0, 1), since it’s derivative 𝑓 ′(𝑥) = − 𝑥√

1−𝑥2 is discontinuous
at ±1, as the picture below suggests.

Still, Rolle’s theorem guarantees the existence of a point 𝑐 ∈ [0, 1] with 𝑓 ′(𝑐) =
0. Indeed, 𝑐 = 0 in this case.

Example 6.29. (The headphone function) The function 𝑓 : [−1, 1] → R defined
by
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𝑓 (𝑥) =
{
0, if |𝑥 | = 1
(1 − 𝑥2) sin 1

1−𝑥2 , if |𝑥 | ≠ 1

is another example of function continuous on [−1, 1] but differentiable only in
(−1, 1).

Theorem 6.30. (Lagrange’s Mean Value Theorem) Let 𝑓 : [𝑎, 𝑏] → R be
continuous. If 𝑓 is differentiable on (𝑎, 𝑏) then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ′(𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

Proof. Set 𝑔(𝑥) = 𝑓 (𝑏)− 𝑓 (𝑎)
𝑏−𝑎 (𝑥 − 𝑎) + 𝑓 (𝑎). Then 𝑔 satisfies 𝑔(𝑎) = 𝑓 (𝑎) and

𝑔(𝑏) = 𝑓 (𝑏). If we set ℎ(𝑥) = 𝑓 (𝑥) −𝑔(𝑥), the function ℎ satisfies ℎ(𝑎) = ℎ(𝑏),
hence by Rolle’s theorem ℎ′(𝑐) = 0 for some 𝑐 ∈ (𝑎, 𝑏). The result follows. ⊓⊔

Corollary 6.31. Let 𝑓 : [𝑎, 𝑏] → R be continuous such that 𝑓 ′(𝑥) = 0 for every
𝑥 ∈ (𝑎, 𝑏). Then 𝑓 is constant.

Corollary 6.32. Let 𝑓 , 𝑔 : [𝑎, 𝑏] → R be continuous functions such that
𝑓 ′(𝑥) = 𝑔′(𝑥) for every 𝑥 ∈ (𝑎, 𝑏). Then 𝑓 (𝑥) = 𝑔(𝑥) + 𝐶, for some constant
𝑐 ∈ R.

Corollary 6.33. Any function 𝑓 : 𝐼 → R defined on a interval such that
𝑥 ∈ 𝐼 ⇒ | 𝑓 ′(𝑥) | ≤ 𝐶 for some 𝐶 ∈ R, is Lipschitz.

Corollary 6.34. Let 𝑓 : 𝐼 → R be differentiable in an interval 𝐼. Then 𝑓 ′(𝑥) ≥ 0
if and only if 𝑓 is nondecreasing in 𝐼. In case 𝑓 ′(𝑥) > 0, then 𝑓 is increasing.
Equivalent statements are true if 𝑓 ′(𝑥) ≤ 0 and 𝑓 nonincreasing.

Proof. Suppose 𝑓 ′(𝑥) ≥ 0 and 𝑥, 𝑦 ∈ 𝐼 such that 𝑥 ≤ 𝑦. By the Mean Value
Theorem, 𝑓 (𝑦) − 𝑓 (𝑥) = 𝑓 ′(𝑐) (𝑦 − 𝑥) ≥ 0, and we conclude that 𝑓 (𝑥) ≤ 𝑓 (𝑦).
Conversely, if 𝑓 is nondecreasing then for every 𝑥 ∈ 𝐼 such that 𝑥 + ℎ ∈ 𝐼,
we have that the ratio 𝑓 (𝑥+ℎ)− 𝑓 (𝑥 )

ℎ
is always nonnegative, hence its limit when

ℎ → 0 is also nonnegative. The same argument mutatis mutandis applies in the
strict inequality. ⊓⊔
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Example 6.35. As a nice application of the Mean Value theorem we show that
lim(

√
𝑛 + 1 −

√
𝑛) = 0. Consider the function 𝑓 : [𝑛, 𝑛 + 1] → R given by

𝑓 (𝑥) =
√
𝑥. Using the Mean Value Theorem we can find 𝑐 ∈ (𝑛, 𝑛 + 1) such that

𝑓 ′(𝑐) =
√
𝑛 + 1 −

√
𝑛

(𝑛 + 1) − 𝑛 ,

or equivalently
√
𝑛 + 1 −

√
𝑛 =

1
2𝑐

≤ 1
2𝑛
.

Using the Squeeze theorem we conclude that lim(
√
𝑛 + 1 −

√
𝑛) = 0.

6.4 Taylor’s Theorem

Let 𝑓 : 𝐼 → R be a real valued function defined on an interval 𝐼. The 𝑛-th
derivative of 𝑓 , if exists, is defined inductively by setting 𝑓 ′′(𝑥) = ( 𝑓 ′)′(𝑥) and
𝑓 (𝑛) (𝑥) = ( 𝑓 (𝑛−1) )′(𝑥) for 𝑛 ∈ N. By convention, we set 𝑓 0(𝑥) = 𝑓 (𝑥).

We say that 𝑓 is of class 𝐶𝑘 in 𝐼, denoted by 𝑓 ∈ 𝐶𝑘 (𝐼), if 𝑓 (𝑘 ) exists and
is continuous in 𝐼. When 𝐼 = R, we simply write 𝑓 ∈ 𝐶𝑘 . Recall that 𝑓 ∈ 𝐶0,
means 𝑓 is continuous, so the definition makes sense even if 𝑘 is zero.

In case 𝑓 ∈ 𝐶𝑘 (𝐼) for every 𝑘 ∈ N, we say that 𝑓 is smooth and write
𝑓 ∈ 𝐶∞(𝐼). Equivalently, a function 𝑓 is smooth if 𝑓 (𝑛) exists for every 𝑛 ∈ N.

The following example generalizes example 6.21.

Example 6.36. The function 𝑓 : R→ R given by 𝑓 (𝑥) = |𝑥 |𝑥 is 𝐶1 but it’s not
𝐶2. Indeed, we can easily check that its derivative is given by

𝑓 ′(𝑥) =
{
2𝑥, 𝑥 ≥ 0
−2𝑥, 𝑥 < 0

which is continuous everywhere. Whereas, 𝑓 ′′ has a jump discontinuity at zero,
so 𝑓 ∉ 𝐶2. More generally, the function 𝑔(𝑥) = |𝑥 |𝑥𝑛 is in 𝐶𝑛 but 𝑔 ∉ 𝐶𝑛+1.

Example 6.37. (Standard Mollifier) Consider the function defined by:

𝑓 (𝑥) =
{
𝑒
− 1

1−|𝑥 |2 , |𝑥 | < 1
0, |𝑥 | ≥ 1
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We can easily see that 𝑓 ∈ 𝐶∞ and the set where 𝑓 ≠ 0 is bounded, hence has
compact closure. This type of function and its higher dimensional generalization
are extensively used in the field of differential equations.

Example 6.38. Since sin′ 𝑥 = cos 𝑥 and cos′ 𝑥 = − sin 𝑥, we deduce that
sin 𝑥, cos 𝑥 ∈ 𝐶∞. Similarly, 𝑒𝑥 , log 𝑥 and any polynomial are examples of
smooth functions.

Let 𝑓 : 𝐼 → R be a real valued function defined on an interval 𝐼 ⊆ R having
derivatives up to order 𝑛 at 𝑎 ∈ 𝐼, i.e. 𝑓 (𝑛) (𝑎) exists. The polynomial 𝑝(𝑥)
defined by

𝑝(𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝑓 ′′(𝑎)
2

(𝑥 − 𝑎)2 + . . . 𝑓
(𝑛) (𝑎)
𝑛!

(𝑥 − 𝑎)𝑛 (6.10)

is called the Taylor polynomial of order 𝑛 of 𝑓 at 𝑎.
Equivalently, the 𝑛-th order Taylor polynomial of 𝑓 at 𝑎 is the unique poly-

nomial 𝑝(𝑥) of degree 𝑛, such that 𝑓 (𝑘 ) (𝑎) = 𝑝 (𝑘 ) (𝑎) for 𝑘 = 1, 2, . . . , 𝑛.

Theorem 6.39. (Taylor’s Theorem) Let 𝑓 : 𝐼 → R be a real valued function
having derivatives up to order 𝑛 at 𝑎 ∈ 𝐼, and 𝑝(𝑥) be the 𝑛-th order Taylor
polynomial at 𝑎. Then the function 𝑟 : 𝐼 → R, defined by 𝑟 (𝑥) = 𝑓 (𝑥) − 𝑝(𝑥),
i.e.

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝑓 ′′(𝑎)
2

(𝑥 − 𝑎)2 + . . . + 𝑓 (𝑛) (𝑎)
𝑛!

(𝑥 − 𝑎)𝑛 + 𝑟 (𝑥),

satisfies lim
𝑥→𝑎

𝑟 (𝑥 )
(𝑥−𝑎)𝑛 = 0.

Proof. Recall that the case 𝑛 = 1 was proved in theorem 6.7. Suppose 𝑛 = 2, we
use the Mean Value Theorem to obtain 𝑐 between 𝑥 and 𝑎 such that:

𝑟 (𝑥)
(𝑥 − 𝑎)2 =

𝑟 (𝑥) − 𝑟 (𝑎)
(𝑥 − 𝑎)2 =

𝑟 ′(𝑐) (𝑥 − 𝑎)
(𝑥 − 𝑎)2 =

𝑟 ′(𝑐)
𝑥 − 𝑎 =

[𝑟 ′(𝑐) − 𝑟 ′(𝑎)] (𝑐 − 𝑎)
(𝑐 − 𝑎) (𝑥 − 𝑎)

∴ lim
𝑥→𝑎

𝑟 (𝑥 )
(𝑥−𝑎)2 = 0, since 𝑟 (2) (𝑎) = 0 and

�� 𝑐−𝑎
𝑥−𝑎

�� ≤ 1. Using the same argument,
we can prove the result for any value 𝑛. ⊓⊔
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Corollary 6.40. (L’Hôpital’s rule) Let 𝑓 , 𝑔 : 𝐼 → R be real valued functions
having derivatives up to order 𝑛 at 𝑎 ∈ 𝐼, such that 𝑓 (𝑘 ) (𝑎) = 𝑔 (𝑘 ) (𝑎) = 0, for
𝑘 = 0, 1, 2, . . . , 𝑛 − 1, but 𝑓 (𝑛) (𝑎) and 𝑔 (𝑛) (𝑎) are non-zero. Then

lim
𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) =

𝑓 (𝑛) (𝑎)
𝑔 (𝑛) (𝑎)

.

Proof. By Taylor’s formula and the hypothesis of the corollary, we have:

𝑓 (𝑥)
𝑔(𝑥) =

𝑓 (𝑛) (𝑎)
𝑛! + 𝑟 (𝑥 )

(𝑥−𝑎)𝑛

𝑔 (𝑛) (𝑎)
𝑛! + 𝑠 (𝑥 )

(𝑥−𝑎)𝑛
,

for some 𝑟 (𝑥), 𝑠(𝑥), satisfying 𝑟 (𝑥 )
(𝑥−𝑎)𝑛 → 0 and 𝑠 (𝑥 )

(𝑥−𝑎)𝑛 → 0, when 𝑥 → 𝑎. The
corollary is then immediate. ⊓⊔

Corollary 6.41. Let 𝑓 : 𝐼 → R be real valued function having derivative up
to order 𝑛 at 𝑎 ∈ int(𝐼), such that 𝑓 (𝑘 ) (𝑎) = 0, for 𝑘 = 1, 2, . . . , 𝑛 − 1, but
𝑓 (𝑛) (𝑎) ≠ 0. Then if 𝑛 is odd, the point 𝑎 is not a local maximum or minimum,
and if 𝑛 is even, two outcomes are possible: 𝑓 (𝑛) (𝑎) > 0 implies the point 𝑎 is a
strict local minimum; 𝑓 (𝑛) (𝑎) < 0 implies the point 𝑎 is a strict local maximum.

Proof. Notice that in this case Taylor’s formula can be written as

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎) = ℎ𝑛
[
𝑓 (𝑛) (𝑎)
𝑛!

+ 𝑟 (𝑎 + ℎ)
ℎ𝑛

]
for ℎ ∈ R such that 𝑎 + ℎ ∈ 𝐼. Since 𝑟 (𝑎+ℎ)

ℎ𝑛
→ 0 when ℎ → 0, for ℎ sufficiently

small, say 0 < |ℎ| < 𝛿, the expression in the square brackets has the same
sign as 𝑓 (𝑛) (𝑎). Hence, if 𝑛 is odd, we can always find ℎ1, ℎ2 ∈ 𝐼 such that
𝑓 (𝑎 + ℎ1) − 𝑓 (𝑎) > 0 and 𝑓 (𝑎 + ℎ2) − 𝑓 (𝑎) < 0, so 𝑎 can’t be a local maximum
or minimum.

Now, suppose 𝑛 is even. Then if 𝑓 (𝑛) (𝑎) > 0, the above discussion implies
𝑓 (𝑎 + ℎ) − 𝑓 (𝑎) > 0 for 0 < |ℎ| < 𝛿, hence 𝑎 is a local minimum. Similarly, if
𝑓 (𝑛) (𝑎) < 0 we must have 𝑓 (𝑎 + ℎ) − 𝑓 (𝑎) < 0, and 𝑎 is a local maximum. ⊓⊔

We can enhance Taylor’s Theorem if we require 𝑓 to be of Class 𝐶𝑛 and
having the 𝑓 (𝑛+1) derivative, instead of just having the 𝑓 𝑛 derivative, which is
not necessarily continuous.

Theorem 6.42. (Taylor’s Theorem with Lagrange Remainder) Let 𝑓 : [𝑎, 𝑏] →
R be a real valued function such that 𝑓 ∈ 𝐶𝑛 and 𝑓 (𝑛+1) (𝑥) exists in (𝑎, 𝑏).
Then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 (𝑏) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑏 − 𝑎) + . . . + 𝑓 (𝑛) (𝑎)
𝑛!

(𝑏 − 𝑎)𝑛 + 𝑓 (𝑛+1) (𝑐)
(𝑛 + 1)! (𝑏 − 𝑎)𝑛+1.
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Proof. Define 𝑔 : [𝑎, 𝑏] → R by

𝑔(𝑥) = 𝑓 (𝑏) − 𝑓 (𝑥) − 𝑓 ′(𝑥) (𝑏−𝑥) + . . .+ 𝑓 (𝑛) (𝑥)
𝑛!

(𝑏−𝑥)𝑛 + 𝐶

(𝑛 + 1)! (𝑏−𝑥)
𝑛+1,

where 𝐶 is the unique number such that 𝑔(𝑎) = 0.
The function 𝑔 is continuous on [𝑎, 𝑏], differentiable in (𝑎, 𝑏), and satisfies

𝑔(𝑎) = 𝑔(𝑏). Therefore, by Rolle’s Theorem, there exists 𝑐 ∈ (𝑎, 𝑏) such that
𝑔′(𝑐) = 0. On the other hand, a quick computation gives:

𝑔′(𝑥) = 𝐶 − 𝑓 (𝑛+1) (𝑥)
𝑛!

(𝑏 − 𝑥)𝑛,

We conclude that𝐶 = 𝑓 (𝑛+1) (𝑐), and the theorem becomes the statement 𝑔(𝑎) =
0. ⊓⊔

Let 𝑓 : 𝐼 → R be a smooth function, i.e. 𝑓 ∈ 𝐶∞, and 𝑎 ∈ 𝐼◦. Using Taylor’s
Theorem with Lagrange remainder, for each 𝑛 ∈ N we have:

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + . . . + 𝑓 (𝑛−1) (𝑎)
(𝑛 − 1)! (𝑥 − 𝑎)𝑛−1 + 𝑟𝑛 (𝑥), (6.11)

where 𝑟𝑛 (𝑥) = 𝑓 (𝑛) (𝑐)
𝑛! (𝑥 − 𝑎)𝑛 and 𝑐 is between 𝑥 and 𝑎. It is then natural to ask

what happens when we let 𝑛→ +∞ in (6.11).

The series 𝑓 (𝑎)+ 𝑓 ′(𝑎) (𝑥−𝑎)+. . .+ 𝑓 (𝑛) (𝑎)
𝑛! (𝑥−𝑎)𝑛+. . . =

∞∑
𝑛=0

𝑓 (𝑛) (𝑎)
𝑛! (𝑥−𝑎)𝑛,

is called the Taylor Series of 𝑓 at 𝑎 ∈ 𝐼. Notice that it’s not entirely clear that
the Taylor Series of 𝑓 at 𝑎 has to coincide with 𝑓 (𝑥), in fact, it’s possible for the
Taylor Series to diverge and even if it converges, it could converge to a number
other than 𝑓 (𝑥).

A function 𝑓 : 𝐼 → R is called Analytic if for every 𝑎 ∈ 𝐼, there exists 𝛿 > 0
such that

|𝑥 − 𝑎 | < 𝛿 ⇒ 𝑓 (𝑥) =
∞∑︁
𝑛=0

𝑓 (𝑛) (𝑎)
𝑛!

(𝑥 − 𝑎)𝑛,

In other words, a function is analytic if it coincides with its Taylor series in
a neighborhood of every point of its domain. Notice that it follows from (6.11)
that a function is analytic if and only if for every 𝑥 ∈ 𝐼, we have lim

𝑛→∞
𝑟𝑛 (𝑥) = 0.

Example 6.43. Any polynomial 𝑝(𝑥) is clearly analytic, since 𝑝 (𝑛) (𝑥) vanishes
for sufficiently large 𝑛 ∈ N.
Example 6.44. The exponential function 𝑓 (𝑥) = 𝑒𝑥 is perhaps one of the most
famous analytic functions. We use Taylor’s theorem (with 𝑎 = 0), to obtain:

𝑒𝑥 = 1 + 𝑥 + 𝑥
2

2
+ . . . + 𝑥

𝑛

𝑛!
+ 𝑒𝑐𝑛 𝑥

𝑛

𝑛!
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with |𝑐𝑛 | < |𝑥 |. Since lim 𝑥𝑛

𝑛! = 0, the Taylor series for 𝑒𝑥 at 0 converges to 𝑒𝑥 .
Moreover, notice that 𝑒𝑥+𝑎 = 𝑒𝑥𝑒𝑎, hence the Taylor series for 𝑒𝑥 converges at
any point 𝑎 ∈ R, and 𝑒𝑥 is analytic.

Example 6.45. Let 𝑥 ∈ R, then

1 + 𝑥 + 𝑥2 + . . . + 𝑥𝑛−1 + 𝑥𝑛

1 − 𝑥 =
1

1 − 𝑥 .

Consider the function 𝑓 : (0, 1) → R given by 𝑓 (𝑥) = 1
1−𝑥 . Then using Taylor’s

Theorem we obtain 𝑟𝑛 (𝑥) = 𝑥𝑛

1−𝑥 in this case, so lim
𝑛→∞

𝑟𝑛 (𝑥) = 0, which implies

𝑓 (𝑥) =
∞∑
𝑛=0

𝑥𝑛. Hence, 𝑓 (𝑥) agrees with its Taylor Series at 0.

Example 6.46. Let 𝑓 : R → R be defined by 𝑓 (𝑥) = cos 𝑥. Using Taylor’s
theorem around the origin (with 𝑎 = 0), we can write

cos 𝑥 = 1 − 𝑥2

2!
+ 𝑥

4

4!
− . . . + (−1)𝑛 𝑥2𝑛

(2𝑛)! + 𝑟2𝑛+1(𝑥)

where 𝑟𝑛 (𝑥) = [cos 𝑥 (𝑛) ] (𝑐) 𝑥𝑛
𝑛! . Notice that

0 ≤ |𝑟𝑛 (𝑥) | ≤
|𝑥 |2𝑛+1

(2𝑛 + 1)! ,

and recall that by example 3.53, lim
𝑛→∞

|𝑥 |2𝑛+1

(2𝑛+1)! = 0. We conclude that lim
𝑛→∞

𝑟𝑛 (𝑥) =
0 and it follows that

cos 𝑥 = 1 − 𝑥2

2!
+ 𝑥

4

4!
− . . . + (−1)𝑛 𝑥2𝑛

(2𝑛)! + . . . .

Hence, the Taylor series of cos 𝑥 at 0 converges to cos 𝑥 at every point 𝑥 ∈ R.
The same argument can be applied if if the Taylor series is not centered at zero
(𝑎 ≠ 0). In conclusion, the function cos 𝑥 is analytic.

Example 6.47. Consider the function 𝑓 : R→ R defined by

𝑓 (𝑥) =
{
𝑒
− 1

𝑥2 , 𝑥 ≠ 0
0, 𝑥 = 0
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Using the fact that lim
𝑥→0

𝑒
− 1
𝑥2

𝑥𝑛
= 0 for any 𝑛 ≥ 0, we can see that 𝑓 (𝑛) (0) = 0,

and the function 𝑓 is smooth. However, the Taylor series at 0 is identically zero,

since
∞∑
𝑛=0

𝑓 (𝑛) (0)
𝑛! 𝑥𝑛 = 0. In particular, since 𝑥 ≠ 0 ⇒ 𝑓 (𝑥) ≠ 0, it’s impossible

for 𝑓 (𝑥) to be analytic on R.
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Exercises

1. Let 𝑓 , 𝑔, ℎ : 𝑋 → R be functions such that, for every 𝑥 ∈ 𝑋 we have 𝑓 (𝑥) ≤
𝑔(𝑥) ≤ ℎ(𝑥). Show that if there is a point 𝑎 ∈ 𝑋 ∩ 𝑋 ′ such that 𝑓 (𝑎) = ℎ(𝑎)
and 𝑓 ′(𝑎) = ℎ′(𝑎) then 𝑔′(𝑎) exists and 𝑔′(𝑎) = 𝑓 ′(𝑎) = ℎ′(𝑎).

2. Let 𝑝 : R→ R be an odd degree polynomial. Then there exists 𝑐 ∈ R such
that 𝑝′′(𝑐) = 0.

3. Let 𝑓 : 𝑋 → R be differentiable at 𝑎 ∈ 𝑋 ∩ 𝑋 ′. If 𝑥𝑛 and 𝑦𝑛 are sequences
in 𝑋 such that lim 𝑥𝑛 = lim 𝑦𝑛 = 𝑎 and 𝑥𝑛 < 𝑎 < 𝑦𝑛 for every 𝑛 ∈ N, show
that

lim
𝑓 (𝑦𝑛) − 𝑓 (𝑥𝑛)
𝑦𝑛 − 𝑥𝑛

= 𝑓 ′(𝑎).

4. Show that the function given by 𝑓 (0) = 0, 𝑓 (𝑥) = 𝑥2 sin 1
𝑥

if 𝑥 ≠ 0,
is differentiable. Find sequences 𝑥𝑛 and 𝑦𝑛 such that 𝑥𝑛 ≠ 𝑦𝑛, lim 𝑥𝑛 =

lim 𝑦𝑛 = 0 but lim 𝑓 (𝑦𝑛 )− 𝑓 (𝑥𝑛 )
𝑦𝑛−𝑥𝑛 doesn’t exist.

5. Let 𝑓 : 𝐼 → R be differentiable on an interval 𝐼 ⊆ R. We call 𝑎 ∈ 𝐼 a critical
point if 𝑓 ′(𝑎) = 0. We say a critical point 𝑎 is non-degenerate if 𝑓 ′′(𝑎) ≠ 0.

a) If 𝑓 ∈ 𝐶1, show that the set of all critical points contained in a closed
interval [𝑐, 𝑑] ⊆ 𝐼 is closed.

b) Show that local maximum and minimum points of 𝑓 are critical points.
Moreover, any critical non-degenerate point is a maximum or minimum.

c) Show that there are 𝐶∞ functions with isolated degenerate local max-
imum/minimums. Moreover, there are critical points of 𝐶∞ functions
that are not local maximum/minimum points.

d) Show that every non-degenerate critical point of 𝑓 is isolated.
e) Let 𝑓 ∈ 𝐶1, suppose that the critical points of 𝑓 contained in a closed

interval [𝑐, 𝑑] ⊆ 𝐼 are non-degenerate. Show that there are finitely
many of them. Conclude that 𝑓 has at most a countable number of
non-degenerate critical points in 𝐼.

f) The function 𝑓 (0) = 0, 𝑓 (𝑥) = 𝑥4 sin 1
𝑥

if 𝑥 ≠ 0 has infinitely many
non-degenerate critical points in [0, 1]. Wouldn’t this be a contradiction
to 5.4? Why/why not?

6. Let 𝑓 : 𝐼 → R be a function defined on interval 𝐼 ⊆ R. If there is 𝐶, 𝛼 > 0
such that ∀𝑥, 𝑦 ∈ 𝐼 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 |𝛼, we say 𝑓 is Holder
continuous. Show that if 𝛼 > 1 then 𝑓 is constant.

7. Let 𝑓 : 𝐼 → R be differentiable on an interval 𝐼 ⊆ R. Show that if 𝑓 ′(𝑥) = 0
for every 𝑥 ∈ 𝐼 then 𝑓 is constant.

8. Show that a differentiable function 𝑓 : 𝐼 → R is Lipschitz, i.e. | 𝑓 (𝑥) −
𝑓 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 |, if and only if | 𝑓 ′(𝑥) | ≤ 𝐶.

9. Give an example of a function 𝑓 : R→ R such that 𝑓 ∈ 𝐶∞, 𝑓 (𝑥) ≠ 𝑥, ∀𝑥 ∈
R and | 𝑓 ′(𝑥) | < 1.

10. Let 𝑓 : [0, 𝜋] → R be defined by 𝑓 (𝑥) = cos(cos(𝑥)). Show that | 𝑓 ′(𝑥) | ≤
𝑐 < 1 for some 𝑐 ∈ R.
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11. Let 𝑓 : (𝑎, +∞) → R be differentiable. Show that if lim
𝑥→+∞

𝑓 (𝑥) = 𝑏 and
lim

𝑥→+∞
𝑓 ′(𝑥) = 𝑐, then 𝑐 = 0. [Hint: Apply the Mean Value theorem on

[𝑛, 𝑛 + 1] and let 𝑛→ +∞.]
12. Let 𝑓 : [𝑎, 𝑏] → R be continuous, differentiable on (𝑎, 𝑏), satisfying

𝑓 (𝑎) = 𝑓 (𝑏). Given 𝑘 ∈ R, show that ∃𝑐 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝑐) = 𝑘 𝑓 (𝑐).
[Hint: Apply Rolle’s theorem to 𝑔(𝑥) = 𝑓 (𝑥)𝑒−𝑘𝑥 .]

13. Let 𝑓 : 𝐼 → R be differentiable on an interval 𝐼 ⊆ R. A root of 𝑓 is a
number 𝑐 ∈ 𝐼 such that 𝑓 (𝑐) = 0. Show that between two consecutives roots
of 𝑓 ′, there is at most one root of 𝑓 .

14. Let 𝑓 : [0, +∞) → R be twice differentiable. Show that if 𝑓 ′′ is bounded
and lim

𝑥→+∞
𝑓 (𝑥) exists, then lim

𝑥→+∞
𝑓 ′(𝑥) = 0.

15. Show that the composition of 𝐶𝑘 functions is still a 𝐶𝑘 function.
16. Given 𝑎, 𝑏 ∈ R with 𝑎 < 𝑏, consider 𝜑 : R→ R given by

𝜑(𝑥) =
{
𝑒

1
(𝑥−𝑎) (𝑥−𝑏) , if 𝑥 ∈ (𝑎, 𝑏),

0, if 𝑥 ∉ (𝑎, 𝑏).

Show that 𝜑 ∈ 𝐶∞ and 𝜑 has exactly one maximum point.
17. Let 𝑓 : 𝐼 → R be twice differentiable at 𝑎 ∈ 𝐼◦. Show that

𝑓 ′′(𝑎) = lim
ℎ→0

𝑓 (𝑎 + ℎ) + 𝑓 (𝑎 − ℎ) − 2 𝑓 (𝑎)
ℎ2

Given a example where the limit above exists but 𝑓 ′(𝑎) doesn’t.
18. Show that the function 𝑓 (𝑥) = |𝑥 |2𝑛+1 is of class 𝐶2𝑛 but 𝑓 (2𝑛+1) (𝑥) doesn’t

exist in every 𝑎 ∈ R.



Chapter 7
Integrals

7.1 Integrable functions

Let [𝑎, 𝑏] ⊆ R be a closed interval. A partition of [𝑎, 𝑏] is a finite subset
𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} ⊆ [𝑎, 𝑏], such that 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏.

By convention, the elements of a partition are written in increasing order:

𝑃 = {𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < . . . < 𝑥𝑛 = 𝑏}.

Let 𝑃,𝑄 be partitions of [𝑎, 𝑏]. We say that the partition𝑄 is a refinement of the
partition 𝑃 if 𝑃 ⊆ 𝑄. More precisely, 𝑄 is obtained from 𝑃 by adding a finite
number of points.

Let 𝑓 : [𝑎, 𝑏] → R be a bounded function. Set 𝑚 = inf 𝑓 and 𝑀 = sup 𝑓 ,
then:

𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀, ∀𝑥 ∈ [𝑎, 𝑏] .
If 𝑃 = {𝑥0, 𝑥1, . . . , 𝑥𝑛} is a partition of [𝑎, 𝑏], we denote

𝑚𝑖 := inf{ 𝑓 (𝑥); 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖} and 𝑀𝑖 := sup{ 𝑓 (𝑥); 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖},

and define the oscillation of 𝑓 at [𝑥𝑖−1, 𝑥𝑖] by

𝜔𝑖 := 𝑀𝑖 − 𝑚𝑖 .

If 𝑓 is continuous, the values 𝑚𝑖 , 𝑀𝑖 , 𝜔𝑖 are achieved by Weierstrass Extreme
Value Theorem.

We define the lower sum of 𝑓 with respect to 𝑃 by

𝑠( 𝑓 ; 𝑃) = 𝑚1(𝑥1 − 𝑥0) + · · · + 𝑚𝑛 (𝑥𝑛 − 𝑥𝑛−1) =
𝑛∑︁
𝑖=1

𝑚𝑖 (𝑥𝑖 − 𝑥𝑖−1),

and likewise, the upper sum of 𝑓 with respect to 𝑃 by

121
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𝑆( 𝑓 ; 𝑃) = 𝑀1(𝑥1 − 𝑥0) + · · · + 𝑀𝑛 (𝑥𝑛 − 𝑥𝑛−1) =
𝑛∑︁
𝑖=1

𝑀𝑖 (𝑥𝑖 − 𝑥𝑖−1).

Fig. 7.1: Representation of 𝑠( 𝑓 ; 𝑃) and 𝑆( 𝑓 ; 𝑃)

By definition, we have

𝑚(𝑏−𝑎) ≤ 𝑠( 𝑓 ; 𝑃) ≤ 𝑆( 𝑓 ; 𝑃) ≤ 𝑀 (𝑏−𝑎) and 𝑆( 𝑓 ; 𝑃)−𝑠( 𝑓 ; 𝑃) =
𝑛∑︁
𝑖=1

𝜔𝑖 (𝑥𝑖−𝑥𝑖−1).

When 𝑓 ≥ 0, the number 𝑠( 𝑓 ; 𝑃) represents an approximation of the area under
the graph of 𝑓 using rectangles that are below the graph, whereas 𝑆( 𝑓 ; 𝑃)
represents an approximation using rectangles above the graph of 𝑓 .

Let P = {𝑃; 𝑃 is a partition of [𝑎, 𝑏]} and 𝑓 : [𝑎, 𝑏] → R be a bounded
function. The lower integral and upper integral are defined respectively by:∫ 𝑏

𝑎

𝑓 (𝑥)dx := sup
𝑃∈P

𝑠( 𝑓 ; 𝑃) and
∫ 𝑏

𝑎

𝑓 (𝑥)dx := inf
𝑃∈P

𝑆( 𝑓 ; 𝑃),

Theorem 7.1. Let 𝑃,𝑄 ∈ P. Then

𝑃 ⊆ 𝑄 ⇒ 𝑠( 𝑓 ; 𝑃) ≤ 𝑠( 𝑓 ;𝑄) and 𝑆( 𝑓 ;𝑄) ≤ 𝑆( 𝑓 ; 𝑃)

Proof. It’s enough to prove the result when 𝑄 = 𝑃 ∪ {𝑎}. Suppose 𝑃 = {𝑥0 <
𝑥1 < . . . < 𝑥𝑛} and 𝑥𝑘−1 < 𝑎 < 𝑥𝑘 for some 𝑘 ≤ 𝑛. Define

𝑚′ := inf
𝑥∈[𝑥𝑘−1,𝑎]

𝑓 (𝑥) and 𝑚′′ := inf
𝑥∈[𝑎,𝑥𝑘 ]

𝑓 (𝑥).

Notice that 𝑚𝑘 is less than or equal to 𝑚′, 𝑚′′. We have:

𝑠( 𝑓 ;𝑄) − 𝑠( 𝑓 ; 𝑃) = 𝑚′(𝑎 − 𝑥𝑘−1) + 𝑚′′(𝑥𝑘 − 𝑎) − 𝑚𝑘 (𝑥𝑘 − 𝑥𝑘−1)
= (𝑚′′ − 𝑚𝑘) (𝑥𝑘 − 𝑎) + (𝑚′ − 𝑚𝑘) (𝑎 − 𝑥𝑘−1)
≥ 0

(7.1)
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A similar argument shows that 𝑆( 𝑓 ;𝑄) ≤ 𝑆( 𝑓 ; 𝑃). ⊓⊔

The figure below illustrates theorem 7.1 for a partition 𝑃 and a refinement
𝑄 ⊇ 𝑃, when 𝑓 (𝑥) = 1

𝑥
. The sum of the highlighted rectangles represent 𝑠( 𝑓 ; 𝑃)

and 𝑠( 𝑓 ;𝑄) respectively. It’s easy to see that 𝑠( 𝑓 ;𝑄) ≥ 𝑠( 𝑓 ; 𝑃).

Fig. 7.2: Representation of 𝑠( 𝑓 ; 𝑃) and 𝑠( 𝑓 ;𝑄)

Corollary 7.2. For any partitions 𝑃,𝑄 ∈ P we have

𝑠( 𝑓 ; 𝑃) ≤ 𝑆( 𝑓 ;𝑄)

Proof. Apply Theorem 7.1 to 𝑃 and 𝑃 ∪𝑄 (𝑄 and 𝑃 ∪𝑄). ⊓⊔

Lemma 7.3. Let 𝑋,𝑌 ⊆ R be sets satisfing

𝑥 ≤ 𝑦, ∀𝑥 ∈ 𝑋,∀𝑦 ∈ 𝑌,

then sup 𝑋 ≤ inf𝑌 . Moreover, the equality sup 𝑋 = inf𝑌 holds if and only if
given 𝜖 > 0, there are 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 such that 𝑦 − 𝑥 < 𝜖 .

Proof. By definition, every 𝑦 ∈ 𝑌 is an upper bound for 𝑋 hence sup 𝑋 ≤ 𝑦, for
every 𝑦 ∈ 𝑌 . On the other hand, sup 𝑋 is a lower bound for𝑌 , thus sup 𝑋 ≤ inf𝑌 .
Suppose sup 𝑋 = inf𝑌 and 𝜖 > 0 is given. Then sup 𝑋− 𝜖

2 is not an upper bound,
so ∃𝑥 ∈ 𝑋 such that sup 𝑋 − 𝜖

2 < 𝑥 ≤ sup 𝑋 . Similarly, we can find 𝑦 ∈ 𝑌 such
that inf𝑌 ≤ 𝑦 < inf𝑌 + 𝜖

2 . Therefore, 𝑦 − 𝑥 < inf𝑌 + 𝜖
2 − sup 𝑋 + 𝜖

2 = 𝜖 .
Conversely, suppose sup 𝑋 < inf𝑌 . If we set 𝜖 = inf𝑌 − sup 𝑋 , then 𝑦 − 𝑥 ≥ 𝜖 .

⊓⊔

Theorem 7.4. Let 𝑓 : [𝑎, 𝑏] → R be a bounded function, say 𝑚 ≤ 𝑓 (𝑥) ≤ 𝑀 ,
then:

𝑚(𝑏 − 𝑎) ≤
∫ 𝑏

𝑎

𝑓 (𝑥)dx ≤
∫ 𝑏

𝑎

𝑓 (𝑥)dx ≤ 𝑀 (𝑏 − 𝑎)

Proof. The proof of the middle inequality follows directly from lemma 7.3. The
other two inequalities are obvious. ⊓⊔
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A bounded function 𝑓 : [𝑎, 𝑏] → R is (Riemann) integrable if∫ 𝑏

𝑎

𝑓 (𝑥)dx =

∫ 𝑏

𝑎

𝑓 (𝑥)dx,

and we denote this common value by
∫ 𝑏

𝑎
𝑓 (𝑥)dx, or simply, by

∫ 𝑏

𝑎
𝑓 .

Example 7.5. The constant function 𝑓 : [𝑎, 𝑏] → R given by 𝑓 (𝑥) = 𝐶 is
clearly integrable since 𝑠( 𝑓 ; 𝑃) = 𝑆( 𝑓 ; 𝑃) = 𝐶 (𝑏 − 𝑎) for any partition 𝑃.

Example 7.6. The Dirichlet function 𝑓 : [0, 1] → R given by 𝑓 (𝑥) = 1 if
𝑥 ∈ Q, and 0 otherwise, is not integrable since 𝑠( 𝑓 ; 𝑃) = 0 and 𝑠( 𝑓 ; 𝑃) = 𝑏 − 𝑎
for any partition 𝑃.

Theorem 7.7. (Cauchy criterion)Let 𝑓 : [𝑎, 𝑏] → R be a bounded function.
The following are equivalent:

(1) 𝑓 is integrable,
(2) For every 𝜖 > 0, there are partitions 𝑃 and 𝑄 of [𝑎, 𝑏] such that 𝑆( 𝑓 ;𝑄) −

𝑠( 𝑓 ; 𝑃) < 𝜖 ,
(3) For every 𝜖 > 0, there is a partition 𝑅 = {𝑥0 < 𝑥1 < . . . < 𝑥𝑛} of [𝑎, 𝑏]

such that 𝑆( 𝑓 ; 𝑅) − 𝑠( 𝑓 ; 𝑅) =
𝑛∑

𝑘=1
𝜔𝑘 (𝑥𝑘 − 𝑥𝑘−1) < 𝜖 .

Proof. The fact that (1) ⇒ (2) and (3) ⇒ (1) follows directly from lemma 7.3.
Suppose (2) is true and set 𝑅 = 𝑃 ∪𝑄, then

𝑠( 𝑓 ; 𝑃) ≤ 𝑠( 𝑓 ; 𝑅) ≤ 𝑆( 𝑓 ; 𝑅) ≤ 𝑆( 𝑓 ;𝑄),

∴ 𝑆( 𝑓 ; 𝑅) − 𝑠( 𝑓 ; 𝑅) < 𝜖 , and (2) ⇒ (3). ⊓⊔

Recall given a function 𝑓 : [𝑎, 𝑏] → R, the oscillation of 𝑓 in 𝐼 is 𝜔(𝐼) =
sup
𝐼

𝑓 − inf
𝐼
𝑓 . We define the oscillation of 𝑓 around a point 𝑐 by 𝜔( 𝑓 , 𝑐) :=

lim
𝛿→0

𝜔(𝑐 − 𝛿, 𝑐 + 𝛿).

Theorem 7.8. Let 𝑓 : [𝑎, 𝑏] → R be a bounded function. Then 𝑓 is continuous
at 𝑐 ∈ [𝑎, 𝑏] if and only if 𝜔( 𝑓 , 𝑐) = 0.

Proof. Suppose 𝑓 continuous at 𝑐. Then given 𝜖 > 0 we can find 𝛿 > 0 such that
for every 𝑥 ∈ [𝑎, 𝑏], |𝑥 − 𝑐 | < 𝛿 ⇒ | 𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖

2 ⇒ 𝑓 (𝑐) − 𝜖
2 < 𝑓 (𝑥) <

𝑓 (𝑐)+ 𝜖
2 , thus𝜔(𝑐−𝛿, 𝑐+𝛿) < 𝜖 . Conversely, suppose𝜔( 𝑓 , 𝑐) = 0. Given 𝜖 > 0,

there exists 𝛿 > 0 such that for 𝑥, 𝑦 ∈ [𝑎, 𝑏], 𝑥, 𝑦 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) ⇒ | 𝑓 (𝑥) −
𝑓 (𝑦) | < 𝜖 , in particular for 𝑦 = 𝑐we have 𝑥 ∈ (𝑐−𝛿, 𝑐+𝛿) ⇒ | 𝑓 (𝑥)− 𝑓 (𝑐) | < 𝜖 ,
the conclusion follows. ⊓⊔
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7.2 Properties of Integrals

Let 𝑓 : [𝑎, 𝑏] → R be a bounded function. For simplicity, we adopt the following
conventions: ∫ 𝑎

𝑎

𝑓 = 0 and
∫ 𝑎

𝑏

𝑓 = −
∫ 𝑏

𝑎

𝑓

Theorem 7.9. Let 𝑎 < 𝑐 < 𝑏. Then 𝑓 : [𝑎, 𝑏] → R is integrable if and only if
𝑓 | [𝑎,𝑐] and 𝑓 | [𝑐,𝑏] are integrable. In the affirmative case, we have∫ 𝑏

𝑎

𝑓 =

∫ 𝑐

𝑎

𝑓 +
∫ 𝑏

𝑐

𝑓 .

Proof. Consider the sets

𝐴 = {𝑠( 𝑓 | [𝑎,𝑐] ; 𝑃); 𝑃 is a partition of [𝑎, 𝑐]},
𝐵 = {𝑠( 𝑓 | [𝑐,𝑏] ; 𝑃); 𝑃 is a partition of [𝑐, 𝑏]},
𝐶 = {𝑠( 𝑓 ; 𝑃); 𝑃 is a partition of [𝑎, 𝑏] and 𝑐 ∈ 𝑃}.

Notice that by Theorem 7.1,
∫ 𝑏

𝑎
𝑓 = sup𝐶. It follows that∫ 𝑏

𝑎

𝑓 = sup(𝐴 + 𝐵) = sup 𝐴 + sup 𝐵 =

∫ 𝑐

𝑎

𝑓 +
∫ 𝑏

𝑐

𝑓 ,

and similarly, ∫ 𝑏

𝑎

𝑓 =

∫ 𝑐

𝑎

𝑓 +
∫ 𝑏

𝑐

𝑓 .

∴

∫ 𝑏

𝑎

𝑓 −
∫ 𝑏

𝑎

𝑓 =

( ∫ 𝑐

𝑎

𝑓 −
∫ 𝑐

𝑎

𝑓

)
+

( ∫ 𝑏

𝑐

𝑓 −
∫ 𝑏

𝑐

𝑓

)
.

We conclude that
∫ 𝑏

𝑎
𝑓 =

∫ 𝑏

𝑎
𝑓 if and only if

∫ 𝑐

𝑎
𝑓 =

∫ 𝑐

𝑎
𝑓 and

∫ 𝑏

𝑐
𝑓 =

∫ 𝑏

𝑐
𝑓 .
⊓⊔

Example 7.10. (Step functions) Given a set 𝑋 ⊆ R, consider the function
𝜒
𝐴 : R→ R defined by

𝜒
𝐴(𝑥) =

{
1, if 𝑥 ∈ 𝐴
0, if 𝑥 ∉ 𝐴

𝜒
𝐴 is called the characteristic function of 𝐴 ⊆ R. Let 𝑃 = {𝑥0 < 𝑥1 < . . . < 𝑥𝑛}

be a partition of [𝑎, 𝑏], and 𝑐1, 𝑐2, . . . , 𝑐𝑛 ∈ R. A function 𝑓 : [𝑎, 𝑏] → R is
called a step function, if it has the form 𝑓 (𝑥) =

𝑛∑
𝑗=1
𝑐 𝑗 𝜒𝐼 𝑗 , where 𝑐 𝑗 ∈ R, and
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𝐼 𝑗 are intervals with endpoints 𝑥 𝑗−1 and 𝑥 𝑗 . Since 𝑓 is constant on 𝐼 𝑗 , theorem
7.9 guarantees that 𝑓 is integrable. Notice that if 𝑓 is not constant then it is an
example of integrable function that is discontinuous.

Fig. 7.3: The step function 𝑓 (𝑥) = 𝜒 (1,2] + 2𝜒 (2,3] + 3𝜒 (3,4]

Theorem 7.11. Let 𝑓 , 𝑔 : [𝑎, 𝑏] → R be integrable. Then

(1) 𝑓 + 𝑔 is integrable and
∫ 𝑏

𝑎
( 𝑓 + 𝑔) =

∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔,

(2) 𝑓 · 𝑔 is integrable,
(3) If ∃𝑘 > 0 such that 0 < 𝑘 ≤ |𝑔(𝑥) | for every 𝑥 ∈ [𝑎, 𝑏], then 𝑓 /𝑔 is

integrable,
(4) If 𝑓 ≤ 𝑔 then

∫ 𝑏

𝑎
𝑓 ≤

∫ 𝑏

𝑎
𝑔,

(5) | 𝑓 | is integrable and
���∫ 𝑏

𝑎
𝑓

��� ≤ ∫ 𝑏

𝑎
| 𝑓 |.

Proof. Notice that for 𝑃,𝑄 partitions of [𝑎, 𝑏] we have:

𝑠( 𝑓 ; 𝑃) + 𝑠(𝑔;𝑄) ≤ 𝑠( 𝑓 ; 𝑃∪𝑄) + 𝑠(𝑔; 𝑃∪𝑄) ≤ 𝑠( 𝑓 + 𝑔; 𝑃∪𝑄) ≤
∫ 𝑏

𝑎

( 𝑓 + 𝑔),

and hence: ∫ 𝑏

𝑎

𝑓 +
∫ 𝑏

𝑎

𝑔 ≤
∫ 𝑏

𝑎

( 𝑓 + 𝑔).

Similarly, we can show that
∫ 𝑏

𝑎
𝑓 +

∫ 𝑏

𝑎
𝑔 ≥

∫ 𝑏

𝑎
( 𝑓 + 𝑔). We conclude from the

inequalities∫ 𝑏

𝑎

𝑓 +
∫ 𝑏

𝑎

𝑔 ≤
∫ 𝑏

𝑎

( 𝑓 + 𝑔) ≤
∫ 𝑏

𝑎

( 𝑓 + 𝑔) ≤
∫ 𝑏

𝑎

𝑓 +
∫ 𝑏

𝑎

𝑔,

that (1) is true.
To prove (2), choose 𝐾 > 0 big enough such that max{| 𝑓 (𝑥) |, |𝑔(𝑥) |} ≤ 𝐾 .

Let 𝑃 = {𝑥𝑖; 𝑖 = 0, . . . , 𝑛} be a partition of [𝑎, 𝑏], and𝜔′
𝑖
, 𝜔′′

𝑖
, 𝜔𝑖 the oscillations
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of 𝑓 ,𝑔 and 𝑓 𝑔 respectively, on the interval [𝑥𝑖 , 𝑥𝑖−1]. For 𝑥, 𝑦 ∈ [𝑥𝑖 , 𝑥𝑖−1] we
have:

| 𝑓 (𝑦)𝑔(𝑦) − 𝑓 (𝑥)𝑔(𝑥) | = | [ 𝑓 (𝑦) − 𝑓 (𝑥)]𝑔(𝑦) + [𝑔(𝑦) − 𝑔(𝑥)] 𝑓 (𝑥) |
≤ 𝜔′

𝑖𝐾 + 𝜔′′
𝑖 𝐾 = (𝜔′

𝑖 + 𝜔′′
𝑖 )𝐾

It follows that:
𝑛∑︁

𝑘=1
𝜔𝑖 (𝑥𝑖 − 𝑥𝑖−1) ≤

𝑛∑︁
𝑘=1

(𝜔′
𝑖 + 𝜔′′

𝑖 )𝐾 (𝑥𝑖 − 𝑥𝑖−1),

and (2) is a direct consequence of Theorem 7.7(3).
Item (3) follows from (2), if we can show that 1

𝑔
is integrable. Let 𝑃 = {𝑥𝑖; 𝑖 =

0, . . . , 𝑛} be a partition of [𝑎, 𝑏], and 𝑥, 𝑦 ∈ [𝑥𝑖 , 𝑥𝑖−1]. By hypothesis:���� 1
𝑔(𝑥) −

1
𝑔(𝑦)

���� ≤ |𝑔(𝑦) − 𝑔(𝑥) |
𝑘2 .

Once more, the result follows from Theorem 7.7(3).
Item (4) is trivial, since in this case 𝑠( 𝑓 ; 𝑃) ≤ 𝑠(𝑔; 𝑃) for every partition,

hence
∫ 𝑏

𝑎
𝑓 ≤

∫ 𝑏

𝑎
𝑔. Finally, to see why (5) is true, consider the inequality:

| | 𝑓 (𝑥) | − | 𝑓 (𝑦) | | ≤ | 𝑓 (𝑥) − 𝑓 (𝑦) |

Which tell us that the oscillation of | 𝑓 | is always bounded by the oscillation of
| 𝑓 |, hence by Theorem 7.7(3) again, | 𝑓 | is integrable. The last part follows from
the inequality −| 𝑓 (𝑥) | ≤ 𝑓 (𝑥) ≤ | 𝑓 (𝑥) |. ⊓⊔

Corollary 7.12. Let 𝑓 : [𝑎, 𝑏] → R integrable and bounded, say | 𝑓 (𝑥) | ≤ 𝐾 .
Then ����∫ 𝑏

𝑎

𝑓

���� ≤ 𝐾 (𝑏 − 𝑎).

Theorem 7.13. Let 𝑓 : [𝑎, 𝑏] → R be continuous. Then 𝑓 is integrable.

Proof. By Theorem 5.68, 𝑓 is uniformly continuous. Let 𝜖 > 0 be given, and
take 𝛿 > 0 such that |𝑥−𝑦 | < 𝛿 ⇒ | 𝑓 (𝑥)− 𝑓 (𝑦) | < 𝜖

𝑏−𝑎 . Now, choose a partition
𝑃 = {𝑥𝑖; 𝑖 = 0, . . . , 𝑛} such that 𝑥𝑖 − 𝑥𝑖−1 < 𝛿 for every 𝑖 = 1, . . . , 𝑛. If 𝜔𝑖 is the
oscillation of 𝑓 at [𝑥𝑖−1, 𝑥𝑖] then 𝜔𝑖 <

𝜖
𝑏−𝑎 and it follows that

𝑛∑︁
𝑘=1

𝜔𝑖 (𝑥𝑖 − 𝑥𝑖−1) <
𝜖

𝑏 − 𝑎

𝑛∑︁
𝑘=1

(𝑥𝑖 − 𝑥𝑖−1) = 𝜖 .

This completes the proof by Theorem 7.7(3). ⊓⊔

Theorem 7.14. Let 𝑓 : [𝑎, 𝑏] → R be monotone. Then 𝑓 is integrable.
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Proof. The argument is similar to the above theorem, namely it uses Theorem
7.7(3). Without loss of generality, suppose 𝑓 increasing. Let 𝜖 > 0 be given,
choose a partition 𝑃 = {𝑥𝑖; 𝑖 = 0, . . . , 𝑛} such that 𝑥𝑖 − 𝑥𝑖−1 <

𝜖
𝑓 (𝑏)− 𝑓 (𝑎) . We

have:
𝑛∑︁

𝑘=1
𝜔𝑖 (𝑥𝑖 − 𝑥𝑖−1) <

𝜖

𝑓 (𝑏) − 𝑓 (𝑎)

𝑛∑︁
𝑘=1

𝜔𝑖 = 𝜖 .

⊓⊔

Example 7.15. Let R+ be the set of a positive real numbers. The natural
logarithm function is the function ln : R+ → R given by

ln 𝑥 =
∫ 𝑥

1

1
𝑥
𝑑𝑥.

Notice that the function 1
𝑥

is positive if 𝑥 > 0, thus ln 𝑥 is always increasing
and hence differentiable and integrable on a closed interval, with (ln 𝑥)′ = 1

𝑥
. A

quick computation shows that ln 𝑥 has all of its derivatives, so it is smooth, i.e.
ln 𝑥 ∈ 𝐶∞.

Since ln 𝑥 is always increasing, it’s injective. We denote its inverse, called the
exponential function, by 𝑒𝑥𝑝(𝑥), it’s easy to see that 𝑒𝑥𝑝(𝑥) = 𝑒𝑥 , where 𝑒 is
the Euler number defined in Example 3.28.

Recall that given an interval 𝐼 ⊆ R with end-points 𝑎 and 𝑏, the length of 𝐼,
denoted by |𝐼 |, is given by |𝐼 | = 𝑏 − 𝑎.

A set 𝑋 ⊆ R has measure zero if given 𝜖 > 0, it’s possible to find a countable

open cover of 𝑋 ⊆
∞⋃
𝑛=1

𝐼𝑛 by open intervals 𝐼𝑛, such that
∞∑
𝑛=1

|𝐼𝑛 | < 𝜖 .

Example 7.16. Any countable set 𝑋 ⊆ R has measure zero. Indeed, given any
𝜖 > 0, take an open interval of length 𝜖

2𝑛 around the 𝑛-th number 𝑥𝑛 ∈ 𝑋 , then
∞∑
𝑛=1

|𝐼𝑛 | < 𝜖 . In particular, the set of Rational numbers Q has measure zero.

Example 7.17. The Cantor set 𝐾 has measure zero since after the 𝑛-th iteration,
𝐾 is contained in the union of 2𝑛 intervals of length 3−𝑛. Hence, given any
𝜖 > 0, if we take 𝑛 sufficiently large, 𝐾 can be covered by open sets whose
length add to a number less than 𝜖 .

Theorem 7.18. (Lebesgue’s criterion)Let 𝑓 : [𝑎, 𝑏] → R be bounded function.
The set of discontinuities 𝐷 of 𝑓 has measure zero if and only if 𝑓 is integrable

Proof. Suppose 𝐷 has measure zero and 𝜔 := sup 𝑓 − inf 𝑓 is the oscillation

of 𝑓 in [𝑎, 𝑏]. Let 𝜖 > 0 be given, and suppose 𝐷 ⊆
∞⋃
𝑛=1

𝐼𝑛, where 𝐼𝑛 are open

intervals such that
∞∑
𝑛=1

|𝐼𝑛 | < 𝜖
2𝜔 . For each 𝑥 ∈ [𝑎, 𝑏] − 𝐷, take an interval
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𝐽𝑥 ∋ 𝑥, such that the oscillation of 𝑓 in 𝐽𝑥 is less than 𝜖
2(𝑏−𝑎) , this is possible

because 𝑓 is continuous at 𝑥.

Now, [𝑎, 𝑏] ⊆
( ∞⋃
𝑛=1

𝐼𝑛

)
∪

( ⋃
𝑥∉𝐷

𝐽𝑥

)
, and by Borel-Lebesgue Theorem, there

is a finite subcover, say 𝐼𝑛1 ∪ . . . 𝐼𝑛𝑘 ∪ 𝐽𝑥1 ∪ . . . 𝐽𝑥𝑙 of [𝑎, 𝑏]. Form a partition
𝑃 of [𝑎, 𝑏] whose elements are 𝑎, 𝑏, and each endpoint of 𝐼𝑛𝑝

and 𝐽𝑥𝑞 , for
𝑝 = 1, . . . 𝑘, 𝑞 = 1, . . . , 𝑙. We write [𝑦 𝑗−1, 𝑦 𝑗] for an interval associated to 𝑃
which is contained in 𝐼𝑛𝑝

, for some 𝑝, and [𝑦𝑡−1, 𝑦𝑡 ], otherwise. Let 𝜔 𝑗 denote
the oscillation of 𝑓 in the 𝑗-th interval of 𝑃. We have:

𝑆( 𝑓 ; 𝑃) − 𝑠( 𝑓 ; 𝑃) =
∑︁

𝜔 𝑗 (𝑦 𝑗 − 𝑦 𝑗−1) +
∑︁

𝜔𝑡 (𝑦𝑡 − 𝑦𝑡−1)

<
∑︁

𝜔(𝑦 𝑗 − 𝑦 𝑗−1) +
∑︁ 𝜖

2(𝑏 − 𝑎) (𝑦𝑡 − 𝑦𝑡−1)

< 𝜔
𝜖

2𝜔
+ 𝜖

2(𝑏 − 𝑎) (𝑏 − 𝑎) = 𝜖

By Theorem 7.7(3), 𝑓 is integrable.
Conversely, suppose 𝑓 is integrable. Set

𝐷𝑛 =

{
𝑥 ∈ [𝑎, 𝑏] ; 𝜔( 𝑓 , 𝑥) ≥ 1

𝑛

}
,

thus 𝐷 =
⋃

𝑛 𝐷𝑛, so it suffices to show that 𝐷𝑛 has measure zero. By Theorem
7.7(3), given 𝑛 ∈ N, 𝜖 > 0 we can find a partition {𝑥𝑖} of [𝑎, 𝑏] such that∑︁

𝑖

𝜔𝑖 (𝑥𝑖 − 𝑥𝑖−1) < 𝜖 ·
1
𝑛
.

In the sum above if we consider only the intervals containing points of 𝐷𝑛 we
obtain 1

𝑛

∑
𝑖 (𝑥𝑖 − 𝑥𝑖−1) <

∑
𝑖 𝜔𝑖 (𝑥𝑖 − 𝑥𝑖−1) < 𝜖 · 1

𝑛
, thus

∑
𝑖 (𝑥𝑖 − 𝑥𝑖−1) < 𝜖 . The

chosen intervals may not cover 𝐷𝑛 entirely, since they can miss some points of
the partition {𝑥𝑖}, but if they do, it would be a finite amount of them and we
could add to the already chosen intervals arbitrarily small ones. ⊓⊔

Example 7.19. The Cantor function 𝑓 : [0, 1] → R given by

𝑓 (𝑥) =
{
1, if 𝑥 ∈ 𝐾
0, if 𝑥 ∉ 𝐾,

is integrable. Indeed, 𝑓 is continuous in [0, 1] − 𝐾 , but it’s discontinuous at
every point 𝑎 of 𝐾 , since we can find a sequence 𝑥𝑛 ∈ [0, 1] − 𝐾 such that
𝑥𝑛 → 𝑎. By Theorem 7.18, 𝑓 is integrable.

Example 7.20. If 𝑎 < 𝑏 then [𝑎, 𝑏] doesn’t have measure zero. Indeed, Let 𝐼𝑛
be a open cover of [𝑎, 𝑏], by Borel-Lebesgue Theorem, we can extract a finite
subcover. After relabeling if necessary, we may assume [𝑎, 𝑏] ⊆ 𝐼1 ∪ . . . ∪ 𝐼𝑛.
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Since the 𝐼 𝑗 are intervals, we have
𝑛⋃
𝑗=1
𝐼 𝑗 ⊆ [𝑐, 𝑑], for some 𝑐, 𝑑 ∈ R. It follows

that 𝜒[𝑎,𝑏] ≤ 𝜒∪𝐼 𝑗 , which implies that

𝑏 − 𝑎 =

∫ 𝑑

𝑐

𝜒[𝑎,𝑏] ≤
∫ 𝑑

𝑐

𝜒∪𝐼 𝑗 =
𝑛∑︁
𝑗=1

|𝐼 𝑗 |

Thus,
𝑛∑
𝑗=1

|𝐼 𝑗 | > 𝑏 − 𝑎, in particular it can’t be arbitrarily small.

Recall that a point 𝑐 ∈ [𝑎, 𝑏] is a critical point for the function 𝑓 : [𝑎, 𝑏] → R
if 𝑓 ′(𝑐) = 0. When 𝑦 = 𝑓 (𝑐), for some critical point 𝑐 ∈ [𝑎, 𝑏], we say 𝑦 is a
critical value of 𝑓 .

Example 7.21. (Riemann’s Example) For 𝑥 ∈ R, let ⟨𝑥⟩ denotes the fractional
part of 𝑥, i.e. ⟨𝑥⟩ = 𝑥 − ⌊𝑥⌋ (see Example 1.24). For each 𝑥 ∈ [0, +∞), consider
the series:

𝑃(𝑥) :=
∞∑︁
𝑛=1

⟨𝑛𝑥⟩
𝑛2

Since ⟨𝑥⟩ ≤ 1 for every 𝑥 ∈ [0, +∞) and
∞∑
𝑛=1

1
𝑛2 = 𝜋2

6 , the function 𝑃(𝑥) is well

defined and |𝑃(𝑥) | ≤ 𝜋2

6 . Notice that 𝑃(𝑥) is periodic since 𝑃(𝑥+1) = 𝑃(𝑥). This
function is example of a function that is continuous at every irrational number
but discontinuous at every rational. It follows from Theorem 7.18 that 𝑃(𝑥) is
integrable. The graph of 𝑃(𝑥) on [0, 1] is shown in Figure 7.4. In Exercise 11,
you will show that it’s impossible to have a function whose set of discontinuities
is the irrationals.

Theorem 7.22. (Sard) Let 𝑓 : [𝑎, 𝑏] → R be a continuously differentiable
function. Then the set of critical values of 𝑓 has measure zero.

Proof. Let 𝑋 be the set of critical values of 𝑓 . Fix 𝛿 > 0 and define

𝑋𝛿 := {𝑥 ∈ [𝑎, 𝑏]; | 𝑓 ′(𝑥) | < 𝛿}

It follows that 𝑋 ⊆ 𝑓 (𝑋𝛿).
Since 𝑋𝛿 is open and bounded, by Theorem 4.10, it can be written as a disjoint

countable union of open intervals, say 𝑋𝛿 =
⋃
𝑘

𝐼𝛿𝑘 . Notice that

𝑋 ⊆ 𝑓 (𝑋𝛿) =
⋃
𝑘

𝑓 (𝐼𝛿𝑘)

Since 𝑓 is continuous and 𝐼𝛿𝑘 is an interval, 𝑓 (𝐼𝛿𝑘) is again an interval, which we
may assume open, if not, we remove the endpoints and consider an arbitrarily
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Fig. 7.4: The function 𝑃(𝑥) =
∞∑
𝑛=1

⟨𝑛𝑥⟩
𝑛2

small open interval around them. By the mean value theorem, we must have
| 𝑓 (𝐼𝛿𝑘) | = | 𝑓 ′(𝑥𝛿𝑘) | |𝐼𝛿𝑘 | < 𝛿 |𝐼𝛿𝑘 |.

Therefore,
∑
𝑘

| 𝑓 (𝐼𝛿𝑘) | ≤ 𝛿
∑
𝑘

|𝐼𝛿𝑘 | ≤ 𝛿(𝑏−𝑎). Given any 𝜖 > 0, we may take

𝛿 = 𝜖
𝑏−𝑎 and it follows that { 𝑓 (𝐼𝛿𝑘)} is a cover of 𝑋 such that

∑
𝑘

𝑓 (𝐼𝛿𝑘) < 𝜖 .
⊓⊔

7.3 The Fundamental Theorem of Calculus

Let 𝑓 : [𝑎, 𝑏] → R be an integrable function. For 𝑥 ∈ [𝑎, 𝑏] we define:

𝐹 (𝑥) =
∫ 𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡.

If 𝑓 (𝑥) is bounded, say | 𝑓 (𝑥) | ≤ 𝐾 then for 𝑥, 𝑦 ∈ [𝑎, 𝑏]:

|𝐹 (𝑥) − 𝐹 (𝑦) | ≤
����∫ 𝑥

𝑦

𝑓 (𝑡) 𝑑𝑡
���� ≤ 𝐾 |𝑥 − 𝑦 |.

Hence, 𝐹 (𝑥) is Lipschitz, in particular uniformly continuous even if 𝑓 (𝑥) is only
integrable and bounded.

We say that 𝐹 (𝑥) is the antiderivative of 𝑓 (𝑥).
Example 7.23. Consider the step function 𝑓 (𝑥) = 𝜒[1,2] defined on the interval
[0, 2] and its antiderivative 𝐹 (𝑥). We can easily see that 𝑓 (𝑥) is discontinuous
but 𝐹 (𝑥) is continuous.
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(a) 𝑓 (𝑥 ) = 𝜒 [1,2] (b) 𝐹 (𝑥 ) =
∫ 𝑥

0 𝑓 (𝑡 ) 𝑑𝑡

Fig. 7.5: A function with its antiderivative

Theorem 7.24. Let 𝑓 : [𝑎, 𝑏] → R be an integrable function. If 𝑓 (𝑥) is
continuous at 𝑐 ∈ [𝑎, 𝑏] then 𝐹 (𝑥) =

∫ 𝑥

𝑎
𝑓 (𝑡) 𝑑𝑡 is differentiable at 𝑐 and

𝐹′(𝑐) = 𝑓 (𝑐).

Proof. Given 𝜖 > 0, we can find 𝛿 > 0 such that |𝑡−𝑐 | < 𝛿 ⇒ | 𝑓 (𝑡)− 𝑓 (𝑐) | < 𝜖 .
For 0 < ℎ < 𝛿:����𝐹 (𝑐 + ℎ) − 𝐹 (𝑐)ℎ

− 𝑓 (𝑐)
���� = 1

ℎ

����∫ 𝑐+ℎ

𝑐

[ 𝑓 (𝑡) − 𝑓 (𝑐)] 𝑑𝑡
���� ≤ 1

ℎ

∫ 𝑐+ℎ

𝑐

| 𝑓 (𝑡)− 𝑓 (𝑐) | 𝑑𝑡 ≤ 1
ℎ
𝜖ℎ = 𝜖

A similar argument is true when −𝛿 < ℎ < 0, hence 𝐹′(𝑐) = 𝑓 (𝑐). ⊓⊔

Corollary 7.25. Let 𝑓 : [𝑎, 𝑏] → R be a continuous function. Then its indefinite
integral 𝐹 (𝑥) is differentiable and 𝐹′(𝑥) = 𝑓 (𝑥).

A differentiable function 𝐹 (𝑥) is called a primitive of 𝑓 (𝑥) if 𝐹′(𝑥) = 𝑓 (𝑥).
Corollary 7.25 is the statement that every continuous function defined on a
closed interval has a primitive. Moreover, given any two primitives 𝐹 (𝑥) and
𝐺 (𝑥) of 𝑓 (𝑥) we have (𝐹 − 𝐺)′(𝑥) = 0, hence 𝐹 (𝑥) and 𝐺 (𝑥) differ by a
constant. We conclude:

Corollary 7.26. Let 𝑓 : [𝑎, 𝑏] → R be a continuous function. Then any
primitive of 𝑓 (𝑥) has the form 𝐹 (𝑥) =

∫ 𝑥

𝑎
𝑓 (𝑡) 𝑑𝑡 + 𝐶, where 𝐶 ∈ R.

Example 7.27. The function defined by

𝑓 (𝑥) =
{
2𝑥 sin 1

𝑥
− cos 1

𝑥
, if 𝑥 ≠ 0

0, if 𝑥 = 0,

is discontinuous at 𝑥 = 0, yet has a primitive given by

𝐹 (𝑥) =
{
𝑥2 sin 1

𝑥
, if 𝑥 ≠ 0

0, if 𝑥 = 0.



7.3 The Fundamental Theorem of Calculus 133

Therefore, it’s possible for a function to have a primitive even if it’s discontin-
uous. Notice that the function in example 7.23 doesn’t have a primitive in any
interval containing 1.

(a) 𝑓 (𝑥 ) = 2𝑥 sin 1
𝑥
− cos 1

𝑥
(b) 𝐹 (𝑥 ) = 𝑥2 sin 1

𝑥

Fig. 7.6: A discontinuous function with its primitive

Theorem 7.28. (Fundamental Theorem of Calculus) Let 𝑓 : [𝑎, 𝑏] → R be a
differentiable function. If 𝑓 ′(𝑥) is integrable then∫ 𝑏

𝑎

𝑓 ′(𝑡) 𝑑𝑡 = 𝑓 (𝑏) − 𝑓 (𝑎)

Proof. Let {𝑥𝑖} be a partition of [𝑎, 𝑏]. By the Mean Value Theorem, there
exists 𝑐𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖] such that

𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1) = 𝑓 ′(𝑐𝑖) (𝑥𝑖 − 𝑥𝑖−1)

Define 𝑚𝑖 = inf
[𝑥𝑖−1,𝑥𝑖 ]

𝑓 ′(𝑥) and 𝑀𝑖 = sup
[𝑥𝑖−1,𝑥𝑖 ]

𝑓 ′(𝑥). Then 𝑚𝑖 ≤ 𝑓 ′(𝑐𝑖) ≤ 𝑀𝑖 ,

moreover

𝑓 (𝑏) − 𝑓 (𝑎) =
𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1) =
𝑛∑︁
𝑖=1

𝑓 ′(𝑐𝑖) (𝑥𝑖 − 𝑥𝑖−1),

it follows that
𝑠( 𝑓 ′; 𝑃) ≤ 𝑓 (𝑏) − 𝑓 (𝑎) ≤ 𝑆( 𝑓 ′; 𝑃).

Since 𝑓 ′ is integrable, the numbers 𝑠( 𝑓 ′; 𝑃) and 𝑆( 𝑓 ′; 𝑃) have to be arbitrarily
close. The result follows. ⊓⊔

Corollary 7.29. (Change of Variables) Let 𝑓 : [𝑎, 𝑏] → R be a continuous
function, 𝑔 : [𝑐, 𝑑] → R differentiable with 𝑔′ integrable, and 𝑔( [𝑐, 𝑑]) ⊆
[𝑎, 𝑏]. Then
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∫ 𝑔 (𝑑)

𝑔 (𝑐)
𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑑

𝑐

𝑓 (𝑔(𝑡))𝑔′(𝑡) 𝑑𝑡.

Proof. Since 𝑓 is continuous, it has a primitive, say 𝐹 (𝑥). Using Theorem 7.28
with the function 𝐹 (𝑔(𝑡)) we obtain∫ 𝑑

𝑐

𝑓 (𝑔(𝑡))𝑔′(𝑡) 𝑑𝑡 =
∫ 𝑑

𝑐

𝐹′(𝑔(𝑡)) 𝑑𝑡 = 𝐹 (𝑔(𝑑)) − 𝐹 (𝑔(𝑐))

On the other hand, ∫ 𝑔 (𝑑)

𝑔 (𝑐)
𝑓 (𝑥) 𝑑𝑥 = 𝐹 (𝑔(𝑑)) − 𝐹 (𝑔(𝑐)).

⊓⊔

Corollary 7.30. (Integration by parts) Let 𝑓 , 𝑔 : [𝑎, 𝑏] → R be functions with
integrable derivative,then∫ 𝑏

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥 = 𝑓 (𝑥)𝑔(𝑥)]𝑏𝑎 −
∫ 𝑏

𝑎

𝑓 ′(𝑥)𝑔(𝑥)𝑑𝑥,

where 𝑓 (𝑥)𝑔(𝑥)]𝑏𝑎 = 𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎).

Proof. Immediate consequence of the product rule ( 𝑓 𝑔)′ = 𝑓 ′𝑔 + 𝑓 𝑔′ and
theorem 7.28. ⊓⊔

Corollary 7.31. (Mean Value Theorem - Integral version) Let 𝑓 : [𝑎, 𝑏] → R
be a continuous function. Then there exists 𝑐 ∈ (𝑎, 𝑏) such that∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝑓 (𝑐) (𝑏 − 𝑎)

Proof. Let 𝐹 (𝑥) be a primitive for 𝑓 (𝑥). Then by the Mean Value Theorem∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎) = 𝐹′(𝑐) (𝑏 − 𝑎) = 𝑓 (𝑐) (𝑏 − 𝑎).

⊓⊔

Corollary 7.32. (Taylor’s Formula with Integral Remainder) Let 𝑓 : [𝑎, 𝑎 +
ℎ] → R be function having the derivative of order 𝑛 + 1 integrable. Then

𝑓 (𝑎+ℎ) = 𝑓 (𝑎)+ 𝑓 ′(𝑎)ℎ+. . .+ 𝑓
(𝑛) (𝑎)
𝑛!

ℎ𝑛+
[∫ 1

0

(1 − 𝑡)𝑛
𝑛!

𝑓 (𝑛+1) (𝑎 + 𝑡ℎ) 𝑑𝑡
]
ℎ𝑛+1

Proof. Define 𝑔 : [0, 1] → R by 𝑔(𝑥) = 𝑓 (𝑎 + 𝑡ℎ). It suffices to show that
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𝑔(1) = 𝑔(0) + 𝑔′(0) + . . . + 𝑔
(𝑛) (0)
𝑛!

+
∫ 1

0

(1 − 𝑡)𝑛
𝑛!

𝑔 (𝑛+1) (𝑡) 𝑑𝑡

If 𝑛 = 0, this is just theorem 7.28. If 𝑛 = 1, using integration by parts we have

𝑔(1) = 𝑔(0) +
∫ 1

0
𝑔′(𝑡) 𝑑𝑡 = 𝑔(0) + 𝑔′(0) +

∫ 1

0
(1 − 𝑡)𝑔′′(𝑡) 𝑑𝑡

If 𝑛 = 2, using a similar argument we have

𝑔(1) = 𝑔(0)+𝑔′(0)+
∫ 1

0

(1 − 𝑡)2

2
𝑔′′(𝑡) 𝑑𝑡 = 𝑔(0)+𝑔′(0)+𝑔

′′(0)
2

+
∫ 1

0

(1 − 𝑡)2

2
𝑔′′′(𝑡) 𝑑𝑡

The proof follows once we Iterate this procedure. ⊓⊔

Gven a partition 𝑃 = {𝑥𝑖} of [𝑎, 𝑏], we define the norm of 𝑃, denoted by |𝑃 |, as

|𝑃 | := max
1≤𝑖≤𝑛

|𝑥𝑖 − 𝑥𝑖−1 |

Theorem 7.33. Let 𝑓 : [𝑎, 𝑏] → R be a bounded function. Given 𝜖 > 0, there
exists 𝛿 > 0, such that

|𝑃 | < 𝛿 ⇒ 𝑆( 𝑓 ; 𝑃) <
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 + 𝜖

Proof. It suffices to consider the case where 𝑓 (𝑥) ≥ 0, otherwise we could
consider 𝑓 (𝑥) − inf 𝑓 (𝑥) ≥ 0. Let 𝜖 > 0 be given, then there is a partition
𝑄 = {𝑥0, . . . , 𝑥𝑛}, such that

𝑆( 𝑓 ;𝑄) <
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 + 𝜖
2

Let 𝑀𝑖 = sup
𝑥∈[𝑥𝑖−1,𝑥𝑖 ]

𝑓 (𝑥) and 𝑀 := sup 𝑓 (𝑥). Take any 𝛿 > 0, satisfying

𝛿 < 𝜖
2𝑀𝑛

. Let 𝑃 = {𝑦0, . . . , 𝑦𝑚} be any partition satisfying |𝑃 | < 𝛿, we will use
the index ‘i’ in [𝑦𝑖−1, 𝑦𝑖], whenever [𝑦𝑖−1, 𝑦𝑖] ⊆ [𝑥𝑖−1, 𝑥𝑖], and use the index
‘j’ for the remaining intervals. We have
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𝑆( 𝑓 ; 𝑃) =
∑︁
𝑖

𝑀𝑖 (𝑦𝑖 − 𝑦𝑖−1) +
∑︁
𝑗

𝑀 𝑗 (𝑦 𝑗 − 𝑦 𝑗−1)

≤
∑︁
𝑖

𝑀𝑖 (𝑥𝑖 − 𝑥𝑖−1) + 𝑀𝛿𝑛

≤ 𝑆( 𝑓 ;𝑄) + 𝜖
2

≤
∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 + 𝜖 .

⊓⊔

The argument above can easily be adapted to prove the equivalent result for∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥.

Corollary 7.34. Let 𝑓 : [𝑎, 𝑏] → R be integrable. Then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
|𝑃 |→0

𝑠( 𝑓 ; 𝑃) = lim
|𝑃 |→0

𝑆( 𝑓 ; 𝑃)

A tagged partition, denoted by 𝑃∗, is a partition 𝑃 = {𝑥𝑖} together with a
collection of points {𝑡𝑖}, such that 𝑥𝑖−1 ≤ 𝑡𝑖 ≤ 𝑥𝑖 . Given a function 𝑓 : [𝑎, 𝑏] →
R and a tagged partition 𝑃∗ of [𝑎, 𝑏], we define the Riemann sum of 𝑓 (𝑥) by

𝑅( 𝑓 ; 𝑃∗) =
𝑛∑︁
𝑖=1

𝑓 (𝑡𝑖) (𝑥𝑖 − 𝑥𝑖−1)

It follows directly from the definition that

𝑠( 𝑓 ; 𝑃) ≤ 𝑅( 𝑓 ; 𝑃∗) ≤ 𝑆( 𝑓 ; 𝑃).

Thus, the following corollary is immediate.

Corollary 7.35. (Integral as a Riemann sum) Let 𝑓 : [𝑎, 𝑏] → R be integrable.
Then ∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
|𝑃∗ |→0

𝑅( 𝑓 ; 𝑃∗)

7.4 Improper Integrals

So far we have avoided functions defined on intervals that are not closed. In this
section we will discuss the definition of integrals for such functions.

First, we discuss the case where the function is bounded.
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Theorem 7.36. Let 𝑓 : (𝑎, 𝑏] → R be bounded. If 𝑓 (𝑥) is integrable in [𝑐, 𝑏]
for every 𝑐 ∈ (𝑎, 𝑏), then can extend 𝑓 (𝑥) to a function on [𝑎, 𝑏] such that∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑐→𝑎+

∫ 𝑏

𝑐

𝑓 (𝑥) 𝑑𝑥

Proof. Take any 𝑣 ∈ R and define 𝑓 (𝑎) = 𝑣. Let 𝐾 ∈ R such that | 𝑓 (𝑥) | ≤ 𝑀

for 𝑥 ∈ [𝑎, 𝑏]. By hypothesis, given 𝜖 > 0, for every 𝑐 ∈ (𝑎, 𝑏) we can find a
partition {𝑥𝑖} of [𝑐, 𝑏] such that

𝑆( 𝑓 ; 𝑃) − 𝑠( 𝑓 ; 𝑃) < 𝜖

2

Choose 𝑐 such that 𝑀 (𝑐 − 𝑎) < 𝜖
4 . We form a partition of [𝑎, 𝑏], say 𝑄, by

adding the point 𝑎 to 𝑃. We have

𝑆( 𝑓 ;𝑄) − 𝑠( 𝑓 ;𝑄) ≤ 2𝑀 (𝑐 − 𝑎) + 𝑆( 𝑓 ; 𝑃) − 𝑠( 𝑓 ; 𝑃) < 𝜖,

Thus, 𝑓 (𝑥) is integrable. Moreover, (the negative of) its antiderivative

𝐹 (𝑥) =
∫ 𝑏

𝑥

𝑓 (𝑥) 𝑑𝑥

is Lipschitz as discussed in the beginning of section 7.3, so

𝐹 (𝑎) = lim
𝑐→𝑎+

𝐹 (𝑐) = lim
𝑐→𝑎+

∫ 𝑏

𝑐

𝑓 (𝑥) 𝑑𝑥

⊓⊔

Remark. 377

The exact same result is valid if we consider an interval of the form [𝑎, 𝑏)
instead. Motivated by theorem 7.36, if 𝑓 : (𝑎, 𝑏] → R is continuous but
unbounded, we define ∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑐→𝑎+

∫ 𝑏

𝑐

𝑓 (𝑥) 𝑑𝑥.

It’s possible that the limit above doesn’t exist, in that case we say the integral
diverges or it’s divergent. Otherwise, we say the integral converges or it’s con-
vergent. A equivalent definition can be given when is defined on [𝑎, 𝑏), namely∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = lim

𝑐→𝑏−

∫ 𝑐

𝑎
𝑓 (𝑥) 𝑑𝑥. Lastly, if 𝑓 : (𝑎, 𝑏) → R is continuous, then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
∫ 𝑐

𝑎

𝑓 (𝑥) 𝑑𝑥 +
∫ 𝑏

𝑐

𝑓 (𝑥) 𝑑𝑥.
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Example 7.37. Fix 𝑎 ∈ R and consider the function 𝑓 : (0, 1] → R defined by
𝑓 (𝑥) = 1

𝑥𝑎
.

(a) 𝑓 (𝑥 ) = 1
𝑥

(b) 𝑓 (𝑥 ) = 1√
𝑥

Fig. 7.7: A function with singularity at zero.

Suppose 𝑎 ≠ 1, then by definition:∫ 1

0

1
𝑥𝑎
𝑑𝑥 = lim

𝑐→0+

∫ 1

𝑐

1
𝑥𝑎
𝑑𝑥 = lim

𝑐→0+
𝑥1−𝑎

1 − 𝑎

]1

𝑐
=

{ 1
1−𝑎 , if 𝑎 < 1
+∞, if 𝑎 > 1.

When 𝑎 = 1, we obtain∫ 1

0

1
𝑥
𝑑𝑥 = lim

𝑐→0+

∫ 1

𝑐

1
𝑥
𝑑𝑥 = lim

𝑐→0+
ln 𝑥

]1

𝑐
= +∞.

Example 7.38. In some case we don’t even have to use the limit definition,
just algebraic manipulations and/or integration by parts suffice. For example,
consider the unbounded function 𝑓 : (0, 𝜋2 ] → R defined by 𝑓 (𝑥) = ln(sin 𝑥).

Fig. 7.8: 𝑓 (𝑥) = ln(sin 𝑥)

First notice that
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∫ 𝜋
2

0
ln(sin 𝑥) 𝑑𝑥 =

∫ 𝜋
2

0
ln(cos 𝑥) 𝑑𝑥,

hence

2
∫ 𝜋

2

0
ln(sin 𝑥) 𝑑𝑥 =

∫ 𝜋
2

0
ln(sin 𝑥 cos 𝑥) 𝑑𝑥 =

∫ 𝜋
2

0
ln

(
1
2

)
𝑑𝑥 +

∫ 𝜋
2

0
ln(2 sin 𝑥 cos 𝑥) 𝑑𝑥

= −𝜋
2

ln 2 +
∫ 𝜋

2

0
ln(sin 2𝑥) 𝑑𝑥

On the other hand,∫ 𝜋
2

0
ln(sin 2𝑥) 𝑑𝑥 = 1

2

∫ 𝜋

0
ln(sin 𝑥) 𝑑𝑥 = 1

2

∫ 𝜋
2

0
ln(sin 𝑥) 𝑑𝑥+1

2

∫ 𝜋

𝜋
2

ln(sin 𝑥) 𝑑𝑥 =
∫ 𝜋

2

0
ln(sin 𝑥) 𝑑𝑥

Therefore, ∫ 𝜋
2

0
ln(sin 𝑥) 𝑑𝑥 = −𝜋

2
ln 2,

and the integral is convergent.

The following proposition is immediate from the definitions.

Proposition 7.39. (Comparison Principle) Let 𝑓 , 𝑔 : (𝑎, 𝑏] → R be nonnega-
tive functions. If there exists 𝑘 > 0 such that

0 ≤ 𝑓 (𝑥) ≤ 𝑘𝑔(𝑥),

and moreover,
∫ 𝑏

𝑎
𝑔(𝑥) 𝑑𝑥 converges, then

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 also converges.

Example 7.40. We claim that the integral∫ 1

0

𝑥2
√

1 − 𝑥2
𝑑𝑥

converges. Indeed, notice that for 0 ≤ 𝑥 ≤ 1 we have 𝑥2
√

1−𝑥2 ≤ 1√
1−𝑥2 , so it

suffices to prove that
∫ 1

0
1√

1−𝑥2 𝑑𝑥 converges, which is straightforward:∫ 1

0

1
√

1 − 𝑥2
𝑑𝑥 = lim

𝑐→1−

∫ 𝑐

0

1
√

1 − 𝑥2
𝑑𝑥 = lim

𝑐→1−
arcsin 𝑐 =

𝜋

2

Given a function 𝑓 : (𝑎, 𝑏] → R, we say
∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 is absolutely convergent

if
∫ 𝑏

𝑎
| 𝑓 (𝑥) | 𝑑𝑥 converges. Similar to the case of series, absolute convergence

implies convergence and we have
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Proposition 7.41. (Comparison Principle– absolute convergence) Let 𝑓 , 𝑔 :
(𝑎, 𝑏] → R be given. If there exists 𝑘 > 0 such that

| 𝑓 (𝑥) | ≤ 𝑘𝑔(𝑥),

and moreover,
∫ 𝑏

𝑎
𝑔(𝑥) 𝑑𝑥 converges, then

∫ 𝑏

𝑎
| 𝑓 (𝑥) | 𝑑𝑥 converges, in particular∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 also converges.

Now, we extend the definition of integral to functions defined on unbounded
intervals. Let 𝑓 : [𝑎, +∞) → R be continuous. We define∫ +∞

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim
𝑛→+∞

∫ 𝑛

𝑎

𝑓 (𝑥) 𝑑𝑥,

as before, if the limit exists we say the integral converges, otherwise, we say it
diverges. Similar definitions can be given when 𝑓 (𝑥) is defined on (−∞, 𝑏] or
(−∞, +∞).
Example 7.42. Let’s revisit example 7.37. Suppose 𝑓 : [1, +∞) → R is given
by 𝑓 (𝑥) = 1

𝑥𝑎
for a fixed 𝑎 ∈ R. If 𝑎 ≠ 1 we have∫ +∞

1

1
𝑥𝑎
𝑑𝑥 = lim

𝑛→+∞

∫ 𝑛

1

1
𝑥𝑎
𝑑𝑥

= lim
𝑛→+∞

𝑥1−𝑎

1 − 𝑎

]𝑛
1

= lim
𝑛→+∞

𝑛1−𝑎 − 1
1 − 𝑎 =

{ 1
𝑎−1 , if 𝑎 > 1
+∞, if 𝑎 < 1.

When 𝑎 = 1, we have∫ +∞

1

1
𝑥
𝑑𝑥 = lim

𝑛→+∞

∫ 𝑛

1

1
𝑥
𝑑𝑥 = lim

𝑛→+∞
ln 𝑛 = +∞

As before, the comparison principle is also valid in this case. For the sake of
completeness we write below.

Proposition 7.43. (Comparison Principle) Let 𝑓 , 𝑔 : [𝑎, +∞) → R be given. If
there exists 𝑘 > 0 such that

| 𝑓 (𝑥) | ≤ 𝑘𝑔(𝑥),

and moreover,
∫ +∞
𝑎

𝑔(𝑥) 𝑑𝑥 converges, then
∫ +∞
𝑎

| 𝑓 (𝑥) | 𝑑𝑥 converges, in partic-
ular

∫ +∞
𝑎

𝑓 (𝑥) 𝑑𝑥 also converges.

Example 7.44. Despite the periodic behavior of sin 𝑥2, the integral
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∫ ∞

0
sin 𝑥2 𝑑𝑥

is actually convergent.

Fig. 7.9: 𝑓 (𝑥) = sin 𝑥2

Indeed, since sin 𝑥2 is integrable on [0, 1], it suffices to analyze the integral
on [1, +∞). We have∫ ∞

1
sin 𝑥2 𝑑𝑥 = lim

𝑛→+∞

∫ 𝑛

1
sin 𝑥2 𝑑𝑥 = lim

𝑛→+∞

∫ 𝑛2

1

sin 𝑥
2
√
𝑥
𝑑𝑥.

Integrating by parts the last integral we have∫ 𝑛2

1

sin 𝑥
2
√
𝑥
𝑑𝑥 = −cos 𝑥

2
√
𝑥

]𝑛2

1
−

∫ 𝑛2

1

cos 𝑥

4𝑥 3
2
𝑑𝑥,

taking the limit we obtain

lim
𝑛→+∞

∫ 𝑛2

1

sin 𝑥
2
√
𝑥
𝑑𝑥 =

cos 1
2

− 1
4

∫ ∞

1

cos 𝑥

𝑥
3
2
𝑑𝑥,

but
���(cos 𝑥)𝑥− 3

2

��� ≤ 𝑥− 3
2 , and by example 7.42 we know that

∫∞
1

1
𝑥

3
2
𝑑𝑥 converges.

Hence,
∫∞

0 sin 𝑥2 𝑑𝑥 converges. The actual value of the integral is
√︁

𝜋
8 .

Example 7.45. Consider the integral∫ +∞

0

1
(1 + 𝑥)

√
𝑥
=

∫ 1

0

1
(1 + 𝑥)

√
𝑥
+

∫ +∞

1

1
(1 + 𝑥)

√
𝑥

We have
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∫ 1

0

1
(1 + 𝑥)

√
𝑥
= lim

𝑐→0+

∫ 1

𝑐

1
(1 + 𝑥)

√
𝑥

= lim
𝑐→0+

2 arctan
√
𝑥

]1

𝑐

=
𝜋

2

Similarly, ∫ +∞

1

1
(1 + 𝑥)

√
𝑥
= lim

𝑛→+∞

∫ 𝑛

1

1
(1 + 𝑥)

√
𝑥

= lim
𝑛→+∞

2 arctan
√
𝑥

]𝑛
1

= 𝜋 − 𝜋

2
=
𝜋

2

Thus, ∫ +∞

0

1
(1 + 𝑥)

√
𝑥
= 𝜋.

Fig. 7.10: 𝑓 (𝑥) = 1
(1+𝑥 )

√
𝑥

Theorem 7.46. (Integral test) Let 𝑎 ∈ Z and 𝑓 : [𝑎, +∞) → R a decreasing
function. Define for every natural 𝑛 ≥ 𝑎

𝑎𝑛 = 𝑓 (𝑛).

The series
∑
𝑎𝑛 converges if and only if

∫∞
𝑎
𝑓 (𝑥) 𝑑𝑥 converges.

Proof. Since 𝑓 is decreasing, it follows from theorem 7.14 that 𝑓 integrable on
every closed interval. For 𝑥 ∈ [𝑛, +∞) we have

𝑓 (𝑥) ≤ 𝑓 (𝑛).
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Similarly, in (−∞, 𝑛] we have

𝑓 (𝑛) ≤ 𝑓 (𝑥).

Hence, for every 𝑛 ≥ 𝑎, we obtain∫ 𝑛+1

𝑛

𝑓 (𝑥) 𝑑𝑥 ≤
∫ 𝑛+1

𝑛

𝑓 (𝑛) 𝑑𝑥 = 𝑓 (𝑛),

and for 𝑛 ≥ 𝑎 + 1

𝑓 (𝑛) =
∫ 𝑛

𝑛−1
𝑓 (𝑛) 𝑑𝑥 ≤

∫ 𝑛

𝑛−1
𝑓 (𝑥) 𝑑𝑥.

We conclude that ∫ 𝑛+1

𝑛

𝑓 (𝑥) 𝑑𝑥 ≤ 𝑓 (𝑛) ≤
∫ 𝑛

𝑛−1
𝑓 (𝑥) 𝑑𝑥.

By summing over all 𝑛 from 𝑎 to a fixed integer 𝑚 > 𝑛, we obtain∫ 𝑚+1

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤
𝑚∑︁
𝑛=𝑎

𝑓 (𝑛) ≤ 𝑓 (𝑎) +
∫ 𝑚

𝑎

𝑓 (𝑥) 𝑑𝑥.

The conclusion follows by letting 𝑚 → +∞. ⊓⊔

Example 7.47. Fix 𝑝 ∈ R and consider the series
+∞∑
𝑛=2

1
𝑛(ln 𝑛) 𝑝 . The corresponding

integral is ∫ ∞

2

1
𝑥(ln 𝑥) 𝑝 𝑑𝑥

We can easily compute the integral above using substitution (change of vari-
ables): ∫ +∞

2

1
𝑥(ln 𝑥) 𝑝 𝑑𝑥 =

1
1 − 𝑝 (ln 𝑥)

1−𝑝
]+∞

2
, for 𝑝 ≠ 1∫ +∞

2

1
𝑥 ln 𝑥

𝑑𝑥 = ln(ln 𝑥)
]+∞

2
, for 𝑝 = 1

Using the integral test, it follows that
+∞∑
𝑛=2

1
𝑛(ln 𝑛) 𝑝 converges if 𝑝 > 1, and diverges

if 𝑝 ≤ 1.
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Exercises

1. Let 𝑓 : [𝑎, 𝑏] → R be a continuous function. Prove that if 𝑓 is not identically
zero then

∫ 𝑏

𝑎
| 𝑓 (𝑥) | 𝑑𝑥 > 0.

2. Give an example of an integrable function that is discontinuous at an infinite
set.

3. (Cauchy-Schwarz inequality) Let 𝑓 , 𝑔 : [𝑎, 𝑏] → R be integrable functions.
Show that ����∫ 𝑏

𝑎

𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥
����2 ≤

(∫ 𝑏

𝑎

𝑓 (𝑥)2 𝑑𝑥

) (∫ 𝑏

𝑎

𝑔(𝑥)2 𝑑𝑥

)
4. Let 𝑓 : [𝑎, 𝑏] → R be a nonnegative integrable function. Consider the set

𝑋 := {𝜙 : [𝑎, 𝑏] → R ; 𝜙 is a step function and 𝜙(𝑥) ≤ 𝑓 (𝑥) ∀𝑥}

Show that
∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = sup

𝜙∈𝑋

∫ 𝑏

𝑎
𝜙(𝑥) 𝑑𝑥. Show that the result is still valid if

we replace the condition ‘step function’ by continuous or integrable function.
5. Suppose 𝑓 : R→ R is differentiable satisfying

𝑓 (0) = 0 and 𝑓 ′(𝑥) = | 𝑓 (𝑥) |2

Show that 𝑓 (𝑥) is identically zero.
6. Let 𝑓 (𝑥) =

∫ 𝑥

1
ln 𝑡
1+𝑡 𝑑𝑡. Find the value of 𝑐 ∈ R such that

𝑓 (𝑥) + 𝑓

(
1
𝑥

)
= 𝑐(ln 𝑥)2.

7. Give an example of a non integrable function that has a primitive.
8. Suppose 𝑓 : [0, 2] → R and 𝑔 : [−1, 1] → R are integrable. Show that∫ 2

0
(𝑥 − 1) 𝑓 (𝑥 − 1)2 𝑑𝑥 = 0 =

∫ 𝜋

0
𝑔(sin 𝑥) cos 𝑥 𝑑𝑥

9. Show that
∫∞

0
sin 𝑥
𝑥
𝑑𝑥 converges but

∫∞
0

�� sin 𝑥
𝑥

�� 𝑑𝑥 doesn’t.

10. Let 𝛼 ∉ N and consider the function 𝑓 (𝑥) = (1 + 𝑥)𝛼. Show that the Taylor
series of 𝑓 (𝑥) around zero converges if 𝑥 ∈ (−1, 1).

11. Show that there can’t be a function 𝑓 : R→ R that is continuous only at the
rational numbers. Hint: Use Baire Category Theorem (Chapter 4,Exe. 34)

12. Show that if an interval has measure zero then it’s either empty of consists
of a single point.

13. Show that every set with empty interior has measure zero.
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(a) 𝑓 (𝑥 ) = sin 𝑥
𝑥

(b) 𝑓 (𝑥 ) =
�� sin 𝑥

𝑥

��
Fig. 7.11: Problem 7

14. Let 𝑓 : [𝑎, 𝑏] → R be a Lipschitz function. Show that if 𝑋 ⊆ [𝑎, 𝑏] has
measure zero then 𝑓 (𝑋) also has measure zero.

15. Let 𝐾 be the Cantor set. Give an example of a continuous monotone function
𝑓 : [0, 1] → [0, 1] such that 𝑓 (𝐾) doesn’t have measure zero.

16. Let 𝑔 : [𝑎, 𝑏] → R be a nonnegative integrable function such that∫ 𝑏

𝑎
𝑔(𝑥) 𝑑𝑥 = 0. Show that for every integrable 𝑓 (𝑥), we have

∫ 𝑏

𝑎
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 =

0.
17. If 𝑋 has measure zero does it follow that 𝑋 also has measure zero?
18. Find two disjoints sets such that R = 𝑋 ∪ 𝑌 , 𝑋 has measure zero and 𝑌 is a

meager set (countable union of closed sets with empty interior).
19. Show that ∫ ∞

0

cos 𝑥
1 + 𝑥 𝑑𝑥 =

∫ ∞

0

sin 𝑥
(1 + 𝑥)2 𝑑𝑥

20. Let 1 < 𝑠 < ∞. We define the Riemann’s Zeta function by

𝜁 (𝑥) :=
∞∑︁
𝑛=1

1
𝑛𝑥

Show that
𝜁 (𝑥) = 𝑥

∫ ∞

1

⌊𝑡⌋
𝑡𝑥+1 𝑑𝑡.

(The floor function ⌊𝑥⌋ is defined in Example 1.24)
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Fig. 7.12: The Zeta function 𝜁 (𝑥) = ∑∞
𝑛=1

1
𝑛𝑥



Chapter 8
Sequences and series of functions

8.1 Pointwise and uniform convergence

Let 𝑋 ⊆ R be subset of real numbers. A sequence of function 𝑓𝑛 : 𝑋 → R
converges pointwise to a function 𝑓 : 𝑋 → R, denoted by 𝑓𝑛 → 𝑓 , if for every
𝑥 ∈ 𝑋 , the sequence of real numbers 𝑓𝑛 (𝑥) converges to 𝑓 (𝑥), i.e.

lim
𝑛→+∞

𝑓𝑛 (𝑥) = 𝑓 (𝑥).

Notice that the limit is with respect to 𝑛, and 𝑥 is fixed, hence the term pointwise.

Example 8.1. The sequence 𝑓𝑛 : (0, 1) → R, given by 𝑓𝑛 (𝑥) = |sin 𝑥 |− 𝑛
𝑥

converges pointwise to the constant function 𝑓 : (0, 1) → R defined by 𝑓 ≡ 0.

Fig. 8.1: 𝑓𝑛 (𝑥) = |sin 𝑥 |− 𝑛
𝑥 for 1 ≤ 𝑛 ≤ 8.

Indeed, if we fix 𝑥 ∈ (0, 1), then lim
𝑛→+∞

|sin 𝑥 |− 𝑛
𝑥 = 0.

Example 8.2. Consider the sequence 𝑓𝑛 : R→ R, given by 𝑓𝑛 (𝑥) = |𝑥 |
𝑛

.

147
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Fig. 8.2: 𝑓𝑛 (𝑥) = |𝑥 |
𝑛

for 1 ≤ 𝑛 ≤ 8.

For a fixed 𝑥 ∈ R, we clearly have lim
𝑛→+∞

|𝑥 |
𝑛

= 0, thus 𝑓𝑛 converges pointwise
to the constant function 𝑓 (𝑥) = 0.

Example 8.3. Let 𝑓𝑛 : [0, 𝜋] → R, given by 𝑓𝑛 (𝑥) = sin 𝑛𝑥
𝑛

.

Fig. 8.3: 𝑓𝑛 (𝑥) = sin 𝑛𝑥
𝑛

for 1 ≤ 𝑛 ≤ 8.

For any 𝑥 ∈ [0, 𝜋],
−1
𝑛
≤ sin 𝑛𝑥

𝑛
≤ 1
𝑛
.

By the Squeeze Theorem we have

lim
𝑛→+∞

sin 𝑛𝑥
𝑛

= 0,

and we conclude that 𝑓𝑛 converges pointwise to 0.

Example 8.4. Suppose 𝑓𝑛 : R \ {0} → R is given by 𝑓𝑛 (𝑥) = ln
(
|𝑥 |
𝑛

)
.
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Fig. 8.4: 𝑓𝑛 (𝑥) = ln
(
|𝑥 |
𝑛

)
for 1 ≤ 𝑛 ≤ 9.

We claim 𝑓𝑛 doesn’t converge pointwise, indeed, we have for any 𝑥 ≠ 0,

lim
𝑛→+∞

ln
(
|𝑥 |
𝑛

)
= −∞.

We now introduce a stronger notion of convergence, that was not discussed
in chapter 3.

A sequence of functions 𝑓𝑛 : 𝑋 → R converges uniformly to a function
𝑓 : 𝑋 → R, if given 𝜖 > 0 there exists 𝑛0 > 0 such that

𝑛 > 𝑛0 ⇒ | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | < 𝜖.

In other words, the graph of 𝑓𝑛 is arbitrarily close to the graph of 𝑓 in the sense
that for 𝑛 > 𝑛0, we have 𝑓𝑛 (𝑥) ∈ ( 𝑓 (𝑥) − 𝜖, 𝑓 (𝑥) + 𝜖). Notice that 𝑛0 doesn’t
depend on 𝑥. In particular we have:

Proposition 8.5. If 𝑓𝑛 → 𝑓 uniformly then 𝑓𝑛 → 𝑓 pointwise.

It follows directly from the definition that the convergence in Example 8.2 is
not uniform but the one in Example 8.3 is. Here’s another Example:

Example 8.6. The sequence 𝑓𝑛 : R → R given by 𝑓𝑛 (𝑥) = 𝑥

1+𝑛2𝑥2 converges
uniformly to zero ( 𝑓 ≡ 0).
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Fig. 8.5: 𝑓𝑛 (𝑥) = 𝑥

1+𝑛2𝑥2 for 1 ≤ 𝑛 ≤ 9.

Indeed, first notice that 𝑓𝑛 has a global maximum(minimum) at 𝑥 = 1
𝑛
(− 1

𝑛
),

with corresponding values 1
2𝑛 ,−

1
2𝑛 . Let 𝜖 > 0 be given. Choose 𝑛 > 1

2𝜖 then

|𝑥 |
1 + 𝑛2 |𝑥 |2

≤ 1
2𝑛

< 𝜖

as required.

Example 8.7. The sequence 𝑓𝑛 : [0, 1] → R given by 𝑓𝑛 (𝑥) = 𝑥𝑛 (1 − 𝑥𝑛) does
not converge uniformly to zero because 𝑓𝑛 has a global maximum at 𝑥 =

𝑛

√︃
1
2 ,

with 𝑓

(
𝑛

√︃
1
2

)
= 1

4 . Therefore, given any 𝜖 < 1
4 , there is no number 𝑛 ∈ N such

that 𝑓𝑛 < 𝜖 . Notice that by the squeeze Theorem 𝑓𝑛 does converge pointwise to
zero.

Fig. 8.6: 𝑓𝑛 (𝑥) = 𝑥𝑛 (1 − 𝑥𝑛) for 1 ≤ 𝑛 ≤ 8.



8.2 Series of functions 151

Example 8.8. Let 𝑓𝑛 : (0, 1] → R be given by 𝑓𝑛 (𝑥) = sin(ln 𝑥𝑛), we can easily
see that 𝑓𝑛 doesn’t even converge pointwise, hence it can’t converge uniformly
to any function 𝑓𝑛 : (0, 1] → R.

Fig. 8.7: 𝑓𝑛 (𝑥) = sin(ln 𝑥𝑛) for 1 ≤ 𝑛 ≤ 7.

8.2 Series of functions

Let 𝑓𝑛 : 𝑋 → R be a sequence of functions. For each 𝑥 ∈ 𝑋 , we may consider
the series of real numbers

∞∑︁
𝑛=1

𝑓𝑛 (𝑥),

If this series converges for every 𝑥 ∈ 𝑋 , it defines a function 𝑓 (𝑥) : 𝑋 → R
given by

𝑓 (𝑥) =
∞∑︁
𝑛=1

𝑓𝑛 (𝑥),

and we say the series
∞∑
𝑛=1

𝑓𝑛 converges to the function 𝑓 .

Equivalently, define the partial sums

𝑠𝑛 (𝑥) =
𝑗=𝑛∑︁
𝑗=1

𝑓 𝑗 (𝑥).

Then the series
∞∑
𝑛=1

𝑓𝑛 converges to 𝑓 if

lim
𝑛→∞

𝑠𝑛 (𝑥) = 𝑓 (𝑥) for every 𝑥 ∈ 𝑋.
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We say
∞∑
𝑛=1

𝑓𝑛 converges uniformly to 𝑓 if if the sequence of partial sums 𝑠𝑛
converges uniformly to 𝑓 .

Given that the definition of a series of functions relies on sequences, it is
natural to expect that a result for sequences has a corresponding counterpart for
series.

A sequence of functions 𝑓𝑛 : 𝑋 → R is a Cauchy sequence if given 𝜖 > 0,
there exists 𝑛0 > 0 such that

𝑛, 𝑚 > 𝑛0 ⇒ | 𝑓𝑛 (𝑥) − 𝑓𝑚(𝑥) | < 𝜖 for every 𝑥 ∈ 𝑋

Theorem 8.9. (Cauchy’s criterion) A sequence of functions 𝑓𝑛 : 𝑋 → R is
uniformly convergent if and only if it is a Cauchy sequence.

Proof. Suppose 𝑓𝑛 converges to 𝑓 uniformly. Given 𝜖 > 0, we can find 𝑛0 such
that

𝑛 > 𝑛0 ⇒ | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | < 𝜖

2
In particular, if 𝑚, 𝑛 > 𝑛0 then

| 𝑓𝑛 (𝑥) − 𝑓𝑚(𝑥) | ≤ | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | + | 𝑓 (𝑥) − 𝑓𝑚(𝑥) | <
𝜖

2
+ 𝜖

2
= 𝜖,

thus 𝑓𝑛 is Cauchy.
Conversely, suppose 𝑓𝑛 Cauchy. Then, by Theorem 3.43, the sequence of

numbers 𝑓𝑛 (𝑥) is convergent. Define 𝑓 (𝑥) = lim
𝑛→+∞

𝑓𝑛 (𝑥), we claim that this
convergence is uniform. Given 𝜖 > 0, there exists 𝑛0 such that 𝑛, 𝑚 > 𝑛0 ⇒
| 𝑓𝑛 (𝑥) − 𝑓𝑚(𝑥) | < 𝜖 . Fix 𝑛 and let 𝑚 → +∞ we obtain

𝑛 > 𝑛0 ⇒ | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | < 𝜖,

Hence, 𝑓𝑛 → 𝑓 uniformly as desired. ⊓⊔

Corollary 8.10. (Weierstrass M-test∗) Suppose 𝑓𝑛 : 𝑋 → R is a sequence of
functions satisfying

| 𝑓𝑛 (𝑥) | ≤ 𝑎𝑛,

where 𝑎𝑛 is a sequence of non-negative real numbers (𝑎𝑛 ≥ 0). If
∞∑
𝑛=1

𝑎𝑛

converges, then both
∞∑︁
𝑛=1

| 𝑓𝑛 | and
∞∑︁
𝑛=1

𝑓𝑛

converge uniformly.

Proof. For 𝑚, 𝑛 ∈ N and arbitrary 𝑥 ∈ 𝑋 , we have
∗ The ‘M’ in the M-test stands for majorant. The test was originally called the Weierstraßsche Majo-
rantenkriterium, named after the German mathematician Karl Weierstrass.
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| 𝑓𝑛 (𝑥) + . . . 𝑓𝑛+𝑚(𝑥) | ≤ | 𝑓𝑛 (𝑥) | + . . . + | 𝑓𝑛+𝑚(𝑥) | ≤ 𝑎𝑛 + . . . + 𝑎𝑛+𝑚 (8.1)

Since
∞∑
𝑛=1

𝑎𝑛 converges, its partial sums are Cauchy. Hence, by (8.1), the partial

sums of
∞∑
𝑛=1

𝑓𝑛 and
∞∑
𝑛=1

| 𝑓𝑛 | are Cauchy, by Theorem 8.9, they both converge

uniformly. ⊓⊔

Example 8.11. Let’s analyze the convergence of
∞∑
𝑛=1

cos 𝑛𝑥
𝑛2 .

Fig. 8.8: Partial sums 𝑠𝑘 =
𝑘∑

𝑛=1

cos 𝑛𝑥
𝑛2 for the series

∞∑
𝑛=1

cos 𝑛𝑥
𝑛2

First, notice that ���cos 𝑛𝑥
𝑛2

��� ≤ 1
𝑛2 .

We already know that the series
∞∑
𝑛=1

1
𝑛2 is convergent (Example 3.63). Hence, by

the Weierstrass M-test,
∞∑
𝑛=1

cos 𝑛𝑥
𝑛2 is uniformly convergent.

Example 8.12. The series
+∞∑
𝑛=2

arctan 𝑥𝑛

𝑛(𝑛−1) is convergent.
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Fig. 8.9: Partial sums 𝑠𝑘 (k=2 to 30) for the series
+∞∑
𝑛=2

arctan 𝑥𝑛

𝑛(𝑛−1)

Indeed, we observe that ����arctan 𝑥𝑛

𝑛(𝑛 − 1)

���� ≤ 𝜋

2𝑛(𝑛 − 1) .

The series
+∞∑
𝑛=2

𝜋
2𝑛(𝑛−1) is convergent (Example 3.58). Therefore, by the Weier-

strass M-test,
+∞∑
𝑛=2

arctan 𝑥𝑛

𝑛(𝑛−1) is uniformly convergent.

Example 8.13. Consider the series
+∞∑
𝑛=2

(ln 𝑛)𝑥
𝑛

for 𝑥 ∈ R.

(a) 𝑥 ≥ 0 (b) 𝑥 < −1

Fig. 8.10: Partial sums 𝑠𝑘 (k=1 to 30) for the series
+∞∑
𝑛=2

(ln 𝑛)𝑥
𝑛
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We are tempted to use the M-Test, but in fact, for 𝑥 ≥ 0, (ln 𝑛)𝑥
𝑛

is bounded from
below ���� (ln 𝑛)𝑥𝑛

���� ≥ (ln 2)𝑥
𝑛

Using the fact that the harmonic series
+∞∑
𝑛=2

1
𝑛

diverges, we obtain that
+∞∑
𝑛=2

(ln 𝑛)𝑥
𝑛

is divergent for 𝑥 ≥ 0. In fact, this Example is the same as Example 7.47, and
the series diverges for 𝑥 ≥ −1, and converges for 𝑥 < −1.

Theorem 8.14. Let 𝑓𝑛 : 𝑋 → R be a sequence of function converging uni-
formly to 𝑓 : 𝑋 → R. For 𝑎 ∈ 𝑋 ′, if lim

𝑥→𝑎
𝑓𝑛 (𝑥) exists for every 𝑛 ∈ N, then

lim
𝑛→+∞

[
lim
𝑥→𝑎

𝑓𝑛 (𝑥)
]

exists. Moreover,

lim
𝑛→+∞

[
lim
𝑥→𝑎

𝑓𝑛 (𝑥)
]
= lim

𝑥→𝑎

[
lim

𝑛→+∞
𝑓𝑛 (𝑥)

]
.

Proof. Let 𝑥𝑛 = lim
𝑥→𝑎

𝑓𝑛 (𝑥). Suppose 𝜖 > 0 is given, then there exists 𝑛0 ∈ N
such that

𝑛, 𝑚 > 𝑛0 ⇒ | 𝑓𝑛 (𝑥) − 𝑓𝑚(𝑥) | <
𝜖

3
For any 𝑛, 𝑚 > 𝑛0, it’s possible to find 𝑐 ∈ 𝑋 such that |𝑥𝑚 − 𝑓𝑚(𝑐) | < 𝜖

3 and
|𝑥𝑛 − 𝑓𝑛 (𝑐) | < 𝜖

3 . It follows that

|𝑥𝑛 − 𝑥𝑚 | ≤ |𝑥𝑛 − 𝑓𝑛 (𝑐) | + | 𝑓𝑚(𝑐) − 𝑥𝑚 | + | 𝑓𝑛 (𝑐) − 𝑓𝑚(𝑐) | < 𝜖.

Thus, 𝑥𝑛 is a Cauchy sequence, hence convergent, say lim
𝑛→+∞

𝑥𝑛 = 𝐿. It remains
to be proved that 𝐿 = lim

𝑥→𝑎
𝑓 (𝑥). Given 𝜖 > 0, there exists 𝑛0 ∈ N such that

𝑛 > 𝑛0 ⇒ |𝐿 − 𝑥𝑛 | <
𝜖

3
and | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | < 𝜖

3
.

Since 𝑥𝑛 = lim
𝑥→𝑎

𝑓𝑛 (𝑥), there exists 𝛿 > 0 such that

0 < |𝑥 − 𝑎 | < 𝛿 ⇒ | 𝑓𝑛 (𝑥) − 𝑥𝑛 | <
𝜖

3
.

Fix 𝑛 > 𝑛0, then for 0 < |𝑥 − 𝑎 | < 𝛿, we obtain

| 𝑓 (𝑥) − 𝐿 | < | 𝑓 (𝑥) − 𝑓𝑛 (𝑥) | + | 𝑓𝑛 (𝑥) − 𝑥𝑛 | + |𝑥𝑛 − 𝐿 | < 𝜖.

⊓⊔

The following corollaries are immediate consequences of the Theorem above.
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Corollary 8.15. If 𝑓𝑛 → 𝑓 uniformly in 𝑋 and 𝑓𝑛 are continuous at 𝑎 ∈ 𝑋 ,
then 𝑓 is continuous at 𝑎. Hence, if 𝑓𝑛 are continuous for every 𝑛 ∈ N then 𝑓 is
continuous as well.

Corollary 8.16. If the series
∞∑
𝑛=1

𝑓𝑛 converge uniformly to 𝑓 in 𝑋 , and lim
𝑥→𝑎

𝑓𝑛 (𝑥)

exists for every 𝑛 ∈ N, then
∞∑
𝑛=1

lim
𝑥→𝑎

𝑓𝑛 (𝑥) converges and we have

lim
𝑥→𝑎

[ ∞∑︁
𝑛=1

𝑓𝑛 (𝑥)
]
=

∞∑︁
𝑛=1

[ lim
𝑥→𝑎

𝑓𝑛 (𝑥)]

Example 8.17. Consider the sequence 𝑓𝑛 (𝑥) = 𝑥𝑛 on [0, 1]. It converges point-
wise to the discontinuous function

𝑓 (𝑥) =
{
1, if 𝑥 = 1
0, if 𝑥 ≠ 1

Fig. 8.11: The sequence 𝑓𝑛 (𝑥) = 𝑥𝑛

Since 𝑓 is discontinuous, the convergence can’t be uniform by Corollary 8.15.

If 𝑓 is continuous and 𝑓𝑛 → 𝑓 pointwise in 𝑋 , the convergence is not
necessarily uniform, that is, the continuity of the limit function 𝑓 is necessary
but not sufficient for uniform convergence of a sequence of continuous functions.
However, the compactness of 𝑋 and monotonicity of 𝑓𝑛 are sufficient for uniform
convergence, as the following Theorem shows.

Theorem 8.18. (Dini) Let 𝑋 ⊆ R be compact, and 𝑓𝑛 : 𝑋 → R a sequence of
continuous functions such that, for each 𝑥 ∈ 𝑋 , the sequence 𝑓1(𝑥), 𝑓2(𝑥), . . . is
monotone. If 𝑓𝑛 → 𝑓 pointwise and 𝑓 is continuous, the convergence 𝑓𝑛 → 𝑓

is uniform.
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Proof. Given 𝜖 > 0, for each 𝑛 ∈ N, define 𝑋𝑛 = {𝑥 ∈ 𝑋; | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | ≥ 𝜖}.
Since both 𝑓𝑛 and 𝑓 are compact, the set 𝑋𝑛 is closed, hence compact. Moreover,
since 𝑓𝑛 is monotone we have | 𝑓𝑛+1(𝑥)− 𝑓 (𝑥) | ≤ | 𝑓𝑛 (𝑥)− 𝑓 (𝑥) |, thus 𝑋𝑛+1 ⊆ 𝑋𝑛.

Let 𝐸 =
+∞⋂
𝑛=1

𝑋𝑛, if 𝑥 ∈ 𝐸 then | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | ≥ 𝜖 for every 𝑛 ∈ N, this is

impossible since 𝑓𝑛 → 𝑓 pointwise. It follows that 𝐸 = ∅, hence 𝑋𝑛0 = ∅ for
some 𝑛0 ∈ N, and

𝑛 > 𝑛0 ⇒ | 𝑓𝑛 (𝑥) − 𝑓 (𝑥) | < 𝜖.
⊓⊔

Corollary 8.19. Let 𝑓𝑛 : 𝑋 → R be a sequence of nonnegative (or nonpositive)
functions, where 𝑋 is a compact set. Then

∞∑
𝑛=1

𝑓𝑛 converges uniformly to a

function 𝑓 : 𝑋 → R if and only if 𝑓 is continuous.

Proof. Indeed, the partial sums 𝑠𝑘 =
𝑘∑

𝑛=1
𝑓𝑛 form a monotone sequence. ⊓⊔

Notice that the sequence 𝑓𝑛 from Example 8.17 is monotone and converges
pointwise to the zero function on the non-compact interval [0, 1), but the con-
vergence is not uniform (since lim

𝑥→1−
𝑥𝑛 = 1). Theorem 8.18 cannot be applied

in this case.
The next result tells us when it is valid to interchange the limit and the integral

for a sequence of functions.

Theorem 8.20. Let 𝑓𝑛 : [𝑎, 𝑏] → R be a sequence of integrable functions. If
𝑓𝑛 → 𝑓 uniformly then 𝑓 : [𝑎, 𝑏] → R is integrable and∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
∫ 𝑏

𝑎

lim
𝑛→+∞

𝑓𝑛 (𝑥) 𝑑𝑥 = lim
𝑛→+∞

∫ 𝑏

𝑎

𝑓𝑛 (𝑥) 𝑑𝑥

Corollary 8.21. Let 𝑓𝑛 : [𝑎, 𝑏] → R be a sequence of functions. If
∞∑
𝑛=1

𝑓𝑛

converges uniformly to a function 𝑓 : [𝑎, 𝑏] → R then 𝑓 is integrable and∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
∫ 𝑏

𝑎

∞∑︁
𝑛=1

𝑓𝑛 (𝑥) 𝑑𝑥 =
∞∑︁
𝑛=1

∫ 𝑏

𝑎

𝑓𝑛 (𝑥) 𝑑𝑥

Example 8.22. Let |𝑥 | < 1. Consider the series

1
1 − 𝑥 = 1 + 𝑥 + 𝑥2 + . . . + 𝑥𝑛 + . . .

Using the M-Test, we can easily see that the convergence above is uniform. If
we integrate term by term we obtain
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− ln(1 − 𝑥) =
∞∑︁
𝑛=1

𝑥𝑛

𝑛
,

In particular, we obtain the following elegant expression for ln 2 by substituting
𝑥 = 1

2 :

ln 2 =
1
2
+ 1

8
+ 1

24
+ 1

64
+ . . .

Fig. 8.12: The function − ln(1 − 𝑥) (dashed) and some of its partial sum 𝑠𝑘
(1 ≤ 𝑘 ≤ 30)

Now, we discuss the case of derivatives. In this case, uniform convergence
alone is not sufficient to interchange the limit and the derivative; a stronger
assumption is required.

Theorem 8.23. Let 𝑓𝑛 : [𝑎, 𝑏] → R be a sequence of differentiable functions.
Suppose there exists 𝑐 ∈ [𝑎, 𝑏] such that 𝑓𝑛 (𝑐) converges, and additionally,
𝑓 ′𝑛 → 𝑔 uniformly for some 𝑔 : [𝑎, 𝑏] → R. Then there exists a differentiable
function 𝑓 : [𝑎, 𝑏] → R such that 𝑓𝑛 → 𝑓 uniformly and 𝑓 ′ = 𝑔. In other
words,

(lim 𝑓𝑛)′ = lim 𝑓 ′𝑛.

Proof. We apply the Mean Value Theorem to the function 𝑓𝑛− 𝑓𝑚 on the interval
[𝑐, 𝑥] to obtain 𝑑 ∈ (𝑐, 𝑥), such that

𝑓𝑛 (𝑥) − 𝑓𝑚(𝑥) = 𝑓𝑛 (𝑐) − 𝑓𝑚(𝑐) + (𝑥 − 𝑐) [ 𝑓 ′𝑛 (𝑑) − 𝑓 ′𝑚(𝑑)] . (8.2)

Since 𝑓 ′𝑛 converges uniformly, the sequence 𝑓𝑛 satisfies Cauchy’s criterion.
Hence, 𝑓𝑛 → 𝑓 uniformly, for some 𝑓 : [𝑎, 𝑏] → R. We may now rewrite (8.2)
using an arbitrary point 𝑥0 ∈ [𝑎, 𝑏] instead of c. For 𝑥 ≠ 𝑥0, we have
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𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑥0)
𝑥 − 𝑥0

− 𝑓𝑚(𝑥) − 𝑓𝑚(𝑥0)
𝑥 − 𝑥0

= 𝑓 ′𝑛 (𝑑) − 𝑓 ′𝑚(𝑑).

Define
𝑞𝑛 (𝑥) =

𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑥0)
𝑥 − 𝑥0

, 𝑥 ≠ 𝑥0.

It follows that 𝑞𝑛 is a Cauchy sequence, and thus converges uniformly on [𝑎, 𝑏] \
{𝑥0} to 𝑓 (𝑥 )− 𝑓 (𝑥0 )

𝑥−𝑥0
. Using Theorem 8.14 we conclude that

𝑓 ′(𝑥0) = lim
𝑥→𝑥0

[
lim

𝑛→+∞
𝑞𝑛 (𝑥)

]
= lim

𝑛→+∞

[
lim
𝑥→𝑥0

𝑞𝑛 (𝑥)
]
= 𝑔(𝑥0).

Since 𝑥0 ∈ [𝑎, 𝑏] was arbitrary, we conclude that 𝑓 ′ = 𝑔. ⊓⊔

Corollary 8.24. Let 𝑓𝑛 : [𝑎, 𝑏] → R be a sequence of differentiable functions.

Suppose there exists 𝑐 ∈ [𝑎, 𝑏] such that the series
+∞∑
𝑛=1

𝑓𝑛 (𝑐) converges, and

additionally, the series
+∞∑
𝑛=1

𝑓 ′𝑛 converges uniformly to some 𝑔 : [𝑎, 𝑏] → R.

Then there exists a differentiable function 𝑓 : [𝑎, 𝑏] → R such that
+∞∑
𝑛=1

𝑓𝑛 = 𝑓

uniformly and 𝑓 ′ = 𝑔

Example 8.25. Consider the series

+∞∑︁
𝑛=1

sin
(
𝑥
𝑛

)
𝑛

.

The series clearly converges when 𝑥 = 0. Moreover, the series formed by its

derivatives
+∞∑
𝑛=1

cos( 𝑥
𝑛 )

𝑛2 converges uniformly by the𝑀−𝑡𝑒𝑠𝑡. Therefore,
+∞∑
𝑛=1

sin( 𝑥
𝑛 )

𝑛

also converges uniformly on any closed interval containing zero.
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Fig. 8.13: Partial sums 𝑠𝑘 (1 ≤ 𝑘 ≤ 30) of
+∞∑
𝑛=1

sin( 𝑥
𝑛 )

𝑛

8.3 Power Series

In this section, we discuss series of functions of the form
+∞∑︁
𝑛=0

𝑎𝑛 (𝑥 − 𝑥0)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)2 + . . . ,

which are commonly referred to as power series.
For simplicity, we will suppose 𝑥0 = 0. This assumption does not affect the

results that follow.

Example 8.26. Recall that by Example 3.56, the numerical series
+∞∑
𝑛=0

𝑎𝑛 con-

verges if and only if |𝑎 | < 1. Therefore, the power series

+∞∑︁
𝑛=0

𝑥𝑛 = 1 + 𝑥 + 𝑥2 + . . . ,

converges uniformly in the open interval (−1, 1), and diverges for 𝑥 ≥ 1. In fact,

as previously discussed in Example 6.45,
+∞∑
𝑛=0

𝑥𝑛 = 1
1−𝑥 .

Example 8.27. As we saw in Example 6.44, the exponential function is analytic
and admits a power series representation:

𝑒𝑥 =

+∞∑︁
𝑛=0

𝑥𝑛

𝑛!
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Notice that this is the same function discussed in Example 7.15.

Theorem 8.28. If a power series
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛 is convergent then exactly one of the

following holds:
a. The series converges only at 𝑥 = 0;
b. The series converges for all 𝑥 ∈ R;
c. The series converges for all 𝑥 ∈ (−𝑟, 𝑟) and diverges for 𝑥 ∉ [−𝑟, 𝑟], where

𝑟 =
1

lim sup 𝑛
√︁
|𝑎𝑛 |

satisfies 0 < 𝑟 < +∞. At the endpoints 𝑥 = ±𝑟, the series may converge or
diverge.

Proof. We analyze the sequence 𝑛
√︁
|𝑎𝑛 |. Suppose this sequence is unbounded.

Then observe that
+∞∑︁
𝑛=0

|𝑎𝑛𝑥𝑛 | =
+∞∑︁
𝑛=0

(
𝑛
√︁
|𝑎𝑛 | |𝑥 |

)𝑛
.

It follows that if 𝑥 ≠ 0, the sequence 𝑛
√︁
|𝑎𝑛 | |𝑥 | does not converge to zero.

Therefore, in this case, the series
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛 converges only at 𝑥 = 0.

Now, suppose
lim

𝑛→+∞
𝑛
√︁
|𝑎𝑛 | = 0.

Applying the root test to the series
+∞∑
𝑛=0

|𝑎𝑛𝑥𝑛 |, we conclude that it is absolutely

convergent for all 𝑥 ∈ R, since

lim
𝑛→+∞

𝑛
√︁
|𝑎𝑛𝑥𝑛 | = |𝑥 | lim

𝑛→+∞
𝑛
√︁
|𝑎𝑛 | = 0.

The only possibility left is

lim sup 𝑛
√︁
|𝑎𝑛 | =

1
𝑟
,

for some 𝑟 > 0. Notice that

lim
𝑛→+∞

𝑛
√︁
|𝑎𝑛𝑥𝑛 | = |𝑥 | lim

𝑛→+∞
𝑛
√︁
|𝑎𝑛 | =

|𝑥 |
𝑟
.

Therefore, by applying the root test again we obtain that the series converges for
|𝑥 | < 𝑟 and diverges for |𝑥 | > 𝑟. ⊓⊔
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The number 𝑟 > 0 described above is called the radius of convergence of

the series
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛. By convention, if the series converges only at zero, we set

𝑟 = 0; and if it converges for all 𝑥 ∈ R, we set 𝑟 = +∞.

Corollary 8.29. The series
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛 converges uniformly in every closed inter-

val contained in (−𝑟, 𝑟), where 𝑟 is the radius of convergence of the series.

Proof. This is an immediate consequence of the M-test. ⊓⊔

Notice that the Corollary does not say however, that
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛 converges

uniformly in the whole interval (−𝑟, 𝑟).
For Example, the series

∑
𝑥𝑛 can’t converge uniformly in (−1, 1), since this

would imply convergence on the endpoints ±1. On the other hand, if the series
does converge at the endpoints ±𝑟, then the convergence is indeed uniform, as
the follows Theorem shows.

Theorem 8.30. (Abel) Let 0 < 𝑟 < +∞ be the radius of convergence of the

series
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛. If
+∞∑
𝑛=0

𝑎𝑛𝑟𝑛 converges, then
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛 is uniformly convergent on

[0, 𝑟]. A similar result holds if
+∞∑
𝑛=0

𝑎𝑛 (−𝑟)𝑛 converges. In particular, if the series

converges at ±𝑟 , then it converges uniformly on [−𝑟, 𝑟].

Proof. By the Cauchy Criterion, given any 𝜖 > 0, there exists 𝑛0 ∈ N such that

𝑛 > 𝑛0 ⇒ |𝑎𝑛+1𝑟𝑛+1 + 𝑎𝑛+2𝑟𝑛+2 + . . . + 𝑎𝑛+𝑚𝑟𝑛+𝑚 | < 𝜖 for all 𝑚 ∈ N

Define 𝑦𝑚 = 𝑎𝑛+𝑚𝑟𝑛+𝑚, and let 𝑠𝑘 =
𝑘∑

𝑚=1
𝑦𝑚 be its partial sum. Then for all

𝑥 ∈ [0, 𝑟]:

|𝑎𝑛+1𝑥𝑛+1 + . . . + 𝑎𝑛+𝑚𝑥𝑛+𝑚 | =
(𝑥
𝑟

)𝑛 ���𝑦1

(𝑥
𝑟

)
+ . . . + 𝑦𝑚

(𝑥
𝑟

)𝑚���
=

(𝑥
𝑟

)𝑛 ����𝑠1

(𝑥
𝑟

)
+ (𝑠2 − 𝑠1)

(𝑥
𝑟

)2
+ . . . + (𝑠𝑚 − 𝑠𝑚−1)

(𝑥
𝑟

)𝑚����
=

(𝑥
𝑟

)𝑛 ����𝑠1

((𝑥
𝑟

)
−

(𝑥
𝑟

)2
)
+ . . . + 𝑠𝑚

(𝑥
𝑟

)𝑚����
<

(𝑥
𝑟

)𝑛
𝜖

(𝑥
𝑟

)
≤ 𝜖

Therefore, the series
+∞∑
𝑛=0

𝑎𝑛𝑥𝑛 converges uniformly on [0, 𝑟]. ⊓⊔
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Example 8.31. According to the Fundamental Theorem of Calculus, the func-
tion arctan : R→ (− 𝜋

2 ,
𝜋
2 ) can be expressed as

arctan(𝑥) =
∫ 𝑥

0

1
1 + 𝑡2

𝑑𝑡.

On the other hand, observe that for every 𝑡 ∈ (−1, 1), the function 1
1+𝑡2 admits

the power series expansion

1
1 + 𝑡2

=

+∞∑︁
𝑛=0

(−1)𝑛𝑡2𝑛,

where the convergence is uniform on every closed interval contained in (−1, 1).
By integrating the series term by term, we obtain

arctan(𝑥) =
+∞∑︁
𝑛=0

∫ 𝑥

0
(−1)𝑛𝑡2𝑛 𝑑𝑡 =

+∞∑︁
𝑛=0

(−1)𝑛 𝑥
2𝑛+1

2𝑛 + 1
.

Applying Abel’s Theorem, we conclude that this series converges uniformly
on the closed interval [−1, 1]. In particular, evaluating at 𝑥 = 1 yields the
classical identity

𝜋

4
= 1 − 1

3
+ 1

5
− 1

7
+ . . .

Theorem 8.32. Let 𝑟 be the radius of convergence of the power series
+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛.

Then for any [𝑎, 𝑏] ⊆ (−𝑟, 𝑟):∫ 𝑏

𝑎

+∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛 𝑑𝑥 =

+∞∑︁
𝑛=0

𝑎𝑛

𝑛 + 1
(𝑏𝑛+1 − 𝑎𝑛+1)

Proof. This follows directly from Corollary 8.21. ⊓⊔

Theorem 8.33. Let 𝑟 be the radius of convergence of the power series
+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛.

Define the function 𝑓 : (−𝑟, 𝑟) → R by

𝑓 (𝑥) =
+∞∑︁
𝑛=0

𝑎𝑛𝑥
𝑛.

Then 𝑓 is differentiable with its derivative given by

𝑓 ′(𝑥) =
+∞∑︁
𝑛=1

𝑎𝑛𝑛𝑥
𝑛−1.
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Moreover, the radius of convergence of the power series defining 𝑓 ′ is also 𝑟.

Proof. Let 𝑟 be the radius of convergence of
+∞∑
𝑛=1

𝑎𝑛𝑛𝑥
𝑛−1. Observe that 𝑟 is

also the radius of convergence of
+∞∑
𝑛=1

𝑎𝑛𝑛𝑥
𝑛. We analyze the convergence of this

latter series. Suppose 𝜌 > 0 satisfies 0 < 𝜌 < 𝑟 . Choose 𝑐 > 0, such that

0 < 𝜌 < 𝑐 < 𝑟.

It follows that for 𝑛 sufficiently large,

𝑛
√︁
|𝑎𝑛 | <

1
𝑐
.

On the other hand, for 𝑛 sufficiently large, we clearly have

𝑛
√
𝑛 <

1
𝜌
.

Combining these two estimates yields

𝑛
√︁
|𝑛𝑎𝑛 | <

1
𝜌
,

and hence, 0 < 𝜌 < 𝑟. We conclude that 0 < 𝜌 < 𝑟 ⇒ 0 < 𝜌 < 𝑟 , this can only

occur if 𝑟 = 𝑟 . By applying Corollary 8.24, we have 𝑓 ′(𝑥) =
+∞∑
𝑛=1

𝑎𝑛𝑛𝑥
𝑛−1. ⊓⊔

Corollary 8.34. Let 𝑟 be the radius of convergence of the power series
+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛.

Define the function 𝑓 : (−𝑟, 𝑟) → R by 𝑓 (𝑥) =
+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛. Then 𝑓 is of class 𝐶∞

(it has all of its derivatives), and moreover,

𝑎𝑛 =
𝑓 𝑛 (0)
𝑛!

.

In other words, 𝑓 is analytic with power series expression given by its Taylor
series around zero.

Corollary 8.35. Let 𝑋 ⊆ R be a set with the property that 0 ∈ 𝑋 ′. Suppose
+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛 and

+∞∑
𝑛=0

𝑏𝑛𝑥
𝑛 are two convergent power series on (−𝑟, 𝑟), such that

+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛 =

+∞∑
𝑛=0

𝑏𝑛𝑥
𝑛 on 𝑋 . Then 𝑎𝑛 = 𝑏𝑛 for 𝑛 ∈ N.
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Proof. By hypothesis, the functions 𝑓 :=
+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛 and 𝑔 :=

+∞∑
𝑛=0

𝑏𝑛𝑥
𝑛 satisfies

𝑓 𝑛 (0) = 𝑔𝑛 (0).

Hence, 𝑎𝑛 =
𝑓 𝑛 (0)
𝑛! =

𝑔𝑛 (0)
𝑛! = 𝑏𝑛. ⊓⊔

Example 8.36. (Binomial Series) For 𝛼 ∈ R and 𝑛 ∈ N ∪ {0}, define(
𝛼

𝑛

)
=
𝛼(𝛼 − 1) . . . (𝛼 − 𝑛 + 1)

𝑘!
if 𝑛 ≠ 0,

and
(𝛼

0
)
= 1. We analyze the convergence of the power series

+∞∑︁
𝑛=0

(
𝛼

𝑛

)
𝑥𝑛.

Observe that

lim
𝑛→+∞

�����
( 𝛼
𝑛+1

)(𝛼
𝑛

) ����� = ���𝑛 − 𝛼
𝑛 + 1

��� = 1.

Therefore, by using the ratio test we conclude that the radius of convergence of
this series is 1, i.e., the series converges for |𝑥 | < 1, and diverges if |𝑥 | > 1.

For 𝑥 ∈ (−1, 1), define 𝑓 (𝑥) =
+∞∑
𝑛=0

(𝛼
𝑛

)
𝑥𝑛. A quick computation shows that 𝑓

satisfies
(1 + 𝑥) 𝑓 ′(𝑥) = 𝛼 𝑓 (𝑥).

Now, define 𝑔(𝑥) = 𝑓 (𝑥 )
(1+𝑥 )𝛼 , then

𝑔′(𝑥) = 𝑓 ′(𝑥) (1 + 𝑥)𝛼 − 𝑓 (𝑥)𝛼(1 + 𝑥)𝛼−1

(1 + 𝑥)2𝛼 = 0.

Hence, 𝑔 is constant, but since 𝑔(0) = 1, we obtain

+∞∑︁
𝑛=0

(
𝛼

𝑛

)
𝑥𝑛 = (1 + 𝑥)𝛼.
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Fig. 8.14: The sequence 𝑓𝑛 (𝑥) = (1 + 𝑥)− 1
𝑛 for (1 ≤ 𝑛 ≤ 20)

Example 8.37. (The Basel Problem) The following problem was first proposed
in 1650 by Italian Mathematician Pietro Mengoli:

“What is the precise value of the series
+∞∑
𝑛=1

1
𝑛2 ?”

We already know that this series converges, namely, due the p-series test.
However, it took several decades before a closed-form expression for the sum
was discovered.

In 1734, the Swiss mathematician Leonhard Euler showed that the series
converges to 𝜋2

6 . Euler’s proof relied on techniques involving infinite products.
Here, we present an alternative solution due to B. Choe, published in 1987.

Recall that
arcsin(𝑥) =

∫ 𝑥

0

1
√

1 − 𝑡2
𝑑𝑡

Using Example 8.36 with 𝛼 = − 1
2 , we obtain for any 𝑥 ∈ [−1, 1]:

arcsin(𝑥) =
+∞∑︁
𝑛=0

(2𝑛 − 1)!!
(2𝑛)!!

𝑥2𝑛+1

2𝑛 + 1
,

where the double factorial is defined by 𝑛!! = 𝑛(𝑛 − 2) (𝑛 − 4) (𝑛 − 6) . . ..
Now, set 𝑥 = sin 𝑡. Substituting into the series, we find

𝑡 =

+∞∑︁
𝑛=0

(2𝑛 − 1)!!
(2𝑛)!!

(sin 𝑡)2𝑛+1

2𝑛 + 1

for any 𝑡 ∈ [0, 2𝜋]. Integrating both sides from 0 to 𝜋, we have
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𝜋2

8
=

+∞∑︁
𝑛=0

(2𝑛 − 1)!!
(2𝑛)!!

1
2𝑛 + 1

∫ 𝜋

0
(sin 𝑡)2𝑛+1 𝑑𝑡

=

+∞∑︁
𝑛=0

(2𝑛 − 1)!!
(2𝑛)!!

1
2𝑛 + 1

(2𝑛)!!
(2𝑛 + 1)!!

=

+∞∑︁
𝑛=0

1
(2𝑛 + 1)2 .

On the other hand, observe that
+∞∑︁
𝑛=0

1
(2𝑛 + 1)2 =

+∞∑︁
𝑛=1

1
𝑛2 −

+∞∑︁
𝑛=1

1
(2𝑛)2 =

3
4

+∞∑︁
𝑛=1

1
𝑛2 .

It follows that
+∞∑︁
𝑛=1

1
𝑛2 =

𝜋2

6
.

Exercises

1. Let 𝑓𝑛 : [0, +∞) → R be a sequence of functions defined by

𝑓𝑛 (𝑥) =
𝑥𝑛

𝑥𝑛 + 1
.

Show that 𝑓𝑛 → 𝑓 pointwise, but not uniformly, for some function 𝑓 . Find
an explicit expression for the limiting function 𝑓 .

Fig. 8.15: The sequence 𝑓𝑛 (𝑥) = 𝑥𝑛

𝑥𝑛+1 for (1 ≤ 𝑛 ≤ 20)
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2. Find the radius of convergence of the series
+∞∑
𝑛=1

𝑥𝑛 (1 − 𝑥𝑛).

3. Show that
+∞∑
𝑛=1

| 𝑓𝑛 | < ∞ ⇒
+∞∑
𝑛=1

𝑓𝑛 < ∞.

4. Consider the series
+∞∑︁
𝑛=1

1
1 + 𝑛2𝑥

.

For what values of 𝑥 does this series converge uniformly?
5. Let 𝑓𝑛 : [0, 1] → R be a sequence defined by 𝑓𝑛 (𝑥) = sin 𝑛𝑥√

𝑛
. Show that

𝑓𝑛 → 0 uniformly, but 𝑓 ′𝑛 does not converge anywhere in [0, 1].
6. Consider the sequence 𝑓𝑛 (𝑥) = 𝑥 + 𝑥𝑛

𝑛
on the interval [0, 1]. Show that

𝑓𝑛 converges uniformly to some function 𝑔, and moreover, show that 𝑓 ′𝑛
converges pointwise but its limit is not 𝑔′.

7. Prove that if 𝑓𝑛 → 𝑓 uniformly in a dense subset 𝐷 ⊆ 𝑋 , then 𝑓𝑛 → 𝑓

uniformly in 𝑋 .

8. Find the radius of convergence of the series
+∞∑
𝑛=1

𝑛
ln𝑛
𝑛 𝑥𝑛.

9. Let 𝑎𝑛 denotes the Fibonacci sequence given by 𝑎0 = 𝑎1 = 1 and

𝑎𝑛+1 = 𝑎𝑛 + 𝑎𝑛−1.

Find the radius of convergence of the power series
+∞∑
𝑛=0

𝑎𝑛𝑥
𝑛.

10. Show that if 𝑓𝑛 → 𝑓 uniformly on 𝑋 ⊆ R, and each 𝑓𝑛 is uniformly
continuous then 𝑓 is uniformly continuous in 𝑋 .

11. Prove that a sequence of polynomials 𝑝𝑛 cannot converge uniformly to 1
𝑥

on
the interval (0, 1).

12. Give an example of a sequence of function 𝑓𝑛 : [𝑎, 𝑏] → R that converges
uniformly on (𝑎, 𝑏), but does not converge at the endpoints.

13. Given 𝜖 > 0, show that the series
+∞∑
𝑛=1

sin 𝑛𝑥
𝑛

converges uniformly on [𝜖, 2𝜋 −
𝜖].

14. Show that the series
+∞∑
𝑛=0

𝑥𝑛

𝑛! does not converge uniformly on the entire real

line (−∞,∞).
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