Exercises

1. Let A, B, X be sets with the following properties:

$$A \subseteq X$$
 and $B \subseteq X$

For any set Y if $A \subseteq Y$ and $B \subseteq Y$ then $X \subseteq Y$.

Show that $X = A \cup B$.

Solution. Obviously $A \cup B \subseteq X$. Take $Y = A \cup B$, then it follows that $X \subseteq A \cup B$ and hence $X = A \cup B$.

5. Given two sets A, B we define the symmetric difference $A\Delta B$ by

$$A\Delta B = (A - B) \cup (B - A).$$

Prove that if $A\Delta B = A\Delta C$, then B = C.

Solution. We have

$$(A\Delta B)\Delta A = (A\Delta B - A) \cup (A - A\Delta B)$$
$$= (B - A) \cup (A - (A - B))$$
$$= B$$

П

A similarly, $(A\Delta C)\Delta A = C$. Hence, B = C.

7. Show that a function $f: A \to B$ is injective if and only if f(A - X) = f(A) - f(X) for every $X \subseteq A$.

Solution. Suppose f injective. Take $y \in f(A - X)$, i.e. y = f(a) for $a \in A$, but $a \notin X$, by the injectivity of $f, y \in f(A) - f(X)$. Now, suppose $y \in f(A) - f(X)$, then y = f(a) but $y \neq f(x)$ for any $x \in X$, again, by the injectivity of $f, a \notin X$, hence $y \in f(A - X)$. Conversely, suppose f(A - X) = f(A) - f(X). Set $X = \{a\}$ for $a \in A$, then $f(A - \{a\}) = f(A) - f(a)$. In particulat, if $b \neq a$ then $f(b) \neq f(a)$.

12. Given two natural numbers $a, b \in \mathbb{N}$, prove that there is a natural number $m \in \mathbb{N}$ such that $m \cdot a > b$.

Solution. Suppose not, then the set $X = \{m \cdot a : m \in \mathbb{N}\}$ would be bounded, hence finite; a contradiction.

14. A number $a \in \mathbb{N}$ is called **predecessor** of $b \in \mathbb{N}$ if a < b and there is no $c \in \mathbb{N}$ such that a < c < b. Prove that every number, except 1, has a predecessor.

Solution. Since 1 is the smallest natural number, there is no number $a \in \mathbb{N}$ such that a < 1. Let n > 1, then n = s(m) = m + 1. We claim m is its predecessor. Indeed, m < n and suppose there is $c \in \mathbb{N}$ such that m < c < n. Since the successor function is surjective, we have c = p + 1, m = q + 1 for some $p \in \mathbb{N}$. Then $q . Iterating this procedure, we obtain a number <math>k \in \mathbb{N}$ with the property that 1 < k < 2, since k > 1, it is the successor of a number $q \in \mathbb{N}$, but then q + 1 < 2 or q < 1, a contradiction. \square

19. Give an example of a surjective function $f: \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, the set $f^{-1}(n)$ is infinite.

Solution. We proved in class that $\mathbb{N} \times \mathbb{N}$ is countable, so there is a bijection $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. Consider the projection $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by $\pi(x,y) = x$. Then $\pi \circ f$ is an example. Another approach that we mentioned in class is partition \mathbb{N} into a countable union of disjoint subsets.

21. Show that if A is countably infinite then $\mathcal{P}(A)$ is uncountable.

Solution. Notice that $\mathcal{P}(A) = \mathcal{F}(A; \{0, 1\})$. Cantor's theorem gives that $\mathcal{P}(A)$ is uncountable.

27. (Cantor-Bernstein-Schroder theorem) Given sets A and B, let $f:A\to B$ and $g:B\to A$ be injective functions. Show that there is a bijection $h:A\to B$.

Solution. Notice that given $x \in A$, after successive applications of f and g we produce a path that either lands back at x, or doesn't. In the former case, set h(x) = f(x). If we don't land back at x, we have an infinite path starting at x or containing x. If the path starts in A, set h(x) = f(x), whereas if the path starts in B, set $h(x) = g^{-1}(x)$. If the path if infinite, contains x but is not cyclic, set h(x) = f(x). The functions h is a bijection by construction.