
Exercises

11. Let F(X;Y ) denote the set of all functions with domain X and codomain Y . Given
the sets A,B,C, show that there is a bijection

F(A×B;C) → F(A;F(B;C)).

Solution. Define h : F(A×B;C) → F(A;F(B;C)) by

h(f) = f̃ : x 7→ fx(y)

where fx(y) = f(x, y). We claim h is bijective.

Suppose h(f) = h(g), then
f̃(x) = g̃(x)

for every x ∈ A. But then fx(y) = gx(y) for every x ∈ A, y ∈ B. Hence, f(x, y) =
g(x, y) and h is injective.

Now, let k : A → F(B;C) be given. Consider the function j : A×B → C given by

j(x, y) = k(x)(y).

Then h(j) = k by definition of h. It follows that h is surjective, and hence bijective.

12 Let a ∈ N. If the setX ⊆ N has the following property: a ∈ X and n ∈ X ⇒ n+1 ∈ X.
Then X contains all natural numbers greater than or equal to a.

Solution. Indeed, notice that for any m > a, we have m = a + (m− a). So it suffices
to prove that numbers of the form a+ n ∈ X for every n ∈ N. We argue by induction.
The case n = 1 is trivial, suppose the result valid for n. But since n ∈ X ⇒ n+1 ∈ X,
we have (a+ n) + 1 ∈ X, hence a+ n+ 1 ∈ X, and the conclusion follows.

16. Using strong induction show that the decomposition of any number in prime factors is
unique.

Solution. Let n be given and suppose the result valid for every m < n. If n is prime
there is nothing to prove, if n is composite say n = pq, then p and q have a unique
prime decomposition by hypothesis. Hence, n has a unique prime decomposition. By
strong induction, it follows that every number has a unique prime decomposition.

18. Let X be a finite set. Show that a function f : X → X is injective ⇐⇒ is surjective.

Solution. Since X is finite, say |X| = n. If f is injective, the image of f has at least n
elements, thus it has exactly n and f is surjective. Conversely, if f is surjective then
its image has exactly n elements, if f is not injective then its image has less than n
elements and it follows that f has to be injective.

21. Show that if A is countably infinite then P(A) is uncountable.
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Solution. By Cantor’s theorem, the cardinality of A is sctrictly less then that of P(A),
so there can be no injective function from A to P(A).

22. Let f : X → X be injective but not surjective. If x ∈ X − f(X), show that
x, f(x), f(f(x)), . . . are pairwise distinct.

Solution. We proof by induction over the number of times f is composed. The case
x, f(x) is trivial since x ∈ X − f(X). Suppose the result valid for n compositions
of f and apply f to each element x, f(x), f(f(x)), . . . , f (n)(x). Then the elements
f(x), f(f(x)), . . . , f (n+1)(x) are all distinct since f is injective. They can’t be x either
by the inductive hypothesis and the fact that x ∈ X − f(X) implies fn+1(x) ̸= x.

23. Let X be an infinite set e Y a finite set. Show that there is a surjective function
f : X → Y and an injective function g : Y → X.

Solution. Suppose Y = {y1, y2, . . . , yn}. Choose n distinct elements ofX, say x1, . . . , xn.
The function f(xi) = yi for i = 1, . . . , n and f(x) = y1 otherwise, is surjective. Simi-
larly, the function g(yi) = xi defines an injective function.

28. Given a sequence of sets A1, A2, A3, . . ., we define the limit superior as the set

lim supAn =
∞⋂
n=1

(
∞⋃
i=n

Ai

)
.

Similarly, the limit inferior is the set

lim inf An =
∞⋃
n=1

(
∞⋂
i=n

Ai

)
.

a. Show that lim supAn is the set of elements that belong to Ai for infinitely many
values of i. Similarly, show that lim inf An is the set of elements that belong to
Ai for every value of i, except possibly, for a finite number of values of i.

Solution. We prove the result for lim supAn, the other statement is analogous.

By definition, if x ∈
∞⋂
n=1

(
∞⋃
i=n

Ai

)
, then x ∈

∞⋃
i=n

Ai for every n ∈ N. If x was in

finitely many Ai, say in An1 , An2 , . . . , Ank
then it wouldn’t be in x ∈

∞⋃
i=nk+1

Ai.

Therefore, x belong to Aifor infinitely many values of i.

b. Conclude that lim inf An ⊆ lim supAn.

Solution. If x belong to Ai for every value of i, except possibly, for a finite number
of values of i then it obviously belong to Ai for infinitely many values of i.

c. Show that if An ⊆ An+1 for every n then lim inf An = lim supAn =
∞⋃
n=1

An.
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Solution. Notice that in this case
∞⋂
i=n

Ai = An, so lim inf An =
∞⋃
n=1

An. By the

item above, it suffices to prove that lim supAn ⊆
∞⋃
n=1

An, but this follows from the

fact that lim supAn is the set of elements that belong to Ai for infinitely many
values of i.

d. Show that if An+1 ⊆ An for every n then lim inf An = lim supAn =
∞⋂
n=1

An.

Solution. Proof is analogous to the that of item c.

e. Give an example of sequence such that lim inf An ̸= lim supAn.

Solution. An = {(−1)n}.
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