
Exercises

12. Let x1 = 1 and xn+1 = 1 +
√
xn. Show that xn is bounded and find lim xn.

Solution. Suppose xn converges, say lim xn = L, then taking the limit on xn+1 =
1 +

√
xn we obtain:

L = 1 +
√
L

Thus, either L = 3−
√
5

2
or L = 3+

√
5

2
.

We argue by induction that xn is increasing and bounded by L = 3+
√
5

2
. The case n = 1

is clear. Suppose xn increases at k, we proof it also increases at k + 1. Indeed,

xk < xk+1 ⇒ 1 +
√
xk < 1 +

√
xk+1 ⇒ xk+1 < xk+2,

hence, xn is increasing. Similarly, if xn < L = 3+
√
5

2
then xn+1 = 1+

√
xn < 1+

√
L = L,

and xn is bounded by L. Since xn is bounded and increasing it converges, since it can’t
converge to 3−

√
5

2
(due to its monotonicity), we must have lim xn = 3+

√
5

2
.

14. Let yn > 0 for every n ∈ N, such that
∑

yn = +∞. If xn is a sequence such that
lim xn

yn
= a, show that lim x1+...+xn

y1+...+yn
= a.

Solution. By hypothesis, there exists n0 ∈ N such that

n > n0 ⇒
xn

yn
∈ (a− ϵ, a+ ϵ)

That is,
(a− ϵ)yn < xn < (a+ ϵ)yn

Summing from n = n0 + 1 to n = k, we have

k∑
n=n0+1

(a− ϵ)yn <
k∑

n=n0+1

xn <
k∑

n=n0+1

(a+ ϵ)yn

adding the remainder terms,we obtain

n0∑
n=1

xn +
k∑

n=n0+1

(a− ϵ)yn <

n0∑
n=1

xn +
k∑

n=n0+1

xn <

n0∑
n=1

xn +
k∑

n=n0+1

(a+ ϵ)yn

Finally, diving by
∑k

n=1 yn and noticing that
∑k

n=1 yn → +∞, by hypothesis, we obtain
for k sufficiently large

a− ϵ <
x1 + . . .+ xk

y1 + . . .+ yk
< a+ ϵ

We conclude that lim x1+...+xn

y1+...+yn
= a.

1



15. (Stolz-Cesaro Theorem) Let yn be an increasing sequence and lim yn = +∞. Show
that

lim
xn+1 − xn

yn+1 − yn
= a ⇒ lim

xn

yn
= a.

Hint: Use the exercise above.

Solution. Let un = xn+1 − xn and vn = yn+1 − yn then by the exercise above

a = lim
u1 + . . .+ un

v1 + . . .+ vn
= lim

xn − x1

yn − y1
= lim

xn

yn
− x1

yn

1− y1
yn

= lim
xn

yn

17. Show that for every n ∈ N, 0 < e −
(
1 + 1

1!
+ 1

2!
+ . . .+ 1

n!

)
< 1

n!n
. Conclude that

e /∈ Q.

Solution. We first show that e /∈ Q. Otherwise, if e = p
q
with p, q coprime, then

0 < p− q

(
1 +

1

1!
+

1

2!
+ . . .+

1

n!

)
<

q

n!n

Choosing n = q:

0 < q!p− q!q

(
1 +

1

1!
+

1

2!
+ . . .+

1

q!

)
< 1

A contradiction, since the middle number is a integer, hence can’t be between 0 and
1. Now, by Example 3.28, we know that e = lim(1 + 1

1!
+ 1

2!
+ . . .+ 1

n!
), hence

e−
(
1 +

1

1!
+

1

2!
+ . . .+

1

n!

)
=

1

(n+ 1)!
+

1

(n+ 2)!
+ . . .

≤ 1

n!

(
1

n+ 1
+

1

(n+ 1)(n+ 1)
+ . . .

)
=

1

n!
· 1
n

19. Suppose the sequence xn satisfies n! = nne−nxn. Show that lim n
√
xn = 1.

Solution. Recall that lim xn+1

xn
= L ⇒ lim n

√
xn = L. It suffices to show that lim xn+1

xn
=

1. We have

lim
xn+1

xn

= lim
(n+ 1)!en+1

(n+ 1)n+1
· nn

n!en
= e lim

(
n

n+ 1

)n

= e
1

e
= 1.
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