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Abstract
We study a generalization of the classical optimal insulation problem by replacing
the standard Laplacian with the p-Laplacian, leading to a p-Poisson equation with
Robin boundary conditions. We also investigate the corresponding eigenvalue
problem. This work extends some results from [6, 14] to the nonlinear setting.
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1 Introduction

In this work, we investigate a generalization of the classical optimal insulation problem.
Broadly speaking, the classical problem seeks the optimal distribution of an insulating
material around a fixed thermally conducting body.

Mathematically, the fixed conducting body is represented by an open, bounded
set {0 C R™ with Lipschitz boundary, and the insulating material is modeled by a set
3. C R” defined by

Ye={o+tv(o); 0 €9Q,0<t<eh(o)},
where v(0) denotes the unit outward normal (which is well-defined since € is assumed

to have a Lipschitz boundary), and h : 9Q — R is a bounded positive Lipschitz
function.
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Set . = QU X.. If u(z) denotes the temperature at a point z € €, and f is a
given source function, then u € H{(£.) minimizes the functional

1
F.(u) = f/ \Dul? dz + 5/ |Dul? dm—/ fudz. (1)
2 Ja 2 Js. Q
Equivalently, u is a solution to the corresponding Euler-Lagrange equation:
—Au=f in Q,

—Au=0 in ¥,
2)

u=20 on 0N,
ou” _ _out
5 = €75~ on 0€.

The optimal insulation problem consists in studying the behavior of the solution u as
¢ — 0. In this context, the notion of I'-convergence in the L? topology is particularly
well-suited for analyzing the limiting behavior of the functionals F; as & — 0.

In [8, 1], the following result is proved:
Theorem. The functionals F. defined by (1) T-converge in the L* topology to the

functional
1 2 5 u? N—1
Fu)== [ |Du|” dz+ = —dH — | fudz.
2 Ja 2 Joa h Q

Consequently, the unique minimizer of F' satisfies the Euler—Lagrange equation:

{Au—f in Q, )

h% +u=0 ondQ.
In this work, we plan to discuss a generalized version of the functional F', namely:

Jul?

_ 1 P L N-1
Fh(u)—g‘/ﬂ\DM dm—l—;)/m)md% —/qu

where 1 < p < N, and h : 9Q — R is a Lipschitz function satisfying for every ¢ € 9Q:
0<a<h(o)<b,
for some a,b > 0. The associated Euler-Lagrange equation is given by

{—Apu —f in Q, "

hP~HDulP~29% 4 ju[P~2u =0 on 0.

The functional F}, is also related, in a sense, to the optimal insulation problem, as
it arises as the I'-limit of the family of functionals (see [1] for the proof) given by

1
Fg(u):];/Q|Du|pda:+§/ |Du|de—/qudx,

e



Fig. 1 Representation of disk Q C R? with insulator described by the set X.. The
function h describing the contour is not optimal for Fj, if p = 2.

which coincides with (1) when p = 2.

When p # 2, the p-Laplacian still appears in various physical models, such as image
denoising [3], sandpile modeling [13], and modeling of non-Newtonian fluids [10]. How-
ever, it is no longer directly related to heat transfer. Nonetheless, the mathematical
analysis of F}, remains of interest even in the case p # 2.

Our first result addresses the following question:

Question: What is the optimal pair (u,h) that minimizes the value of Fj(u),
where u € W'P(Q) and h has fixed content, i.e., [, hdHN "t =m?

In other words, we aim to analyze the following double minimization problem:

. . !
pmin i AR} (5)

where
Ho = {h : 99 — R measurable, h > 0, / hdH4t = m} )
o

In the case p = 2, this question was addressed in [6]. The present paper can be seen
as a natural generalization of that work to the case p # 2. In this setting, the problem
becomes nonlinear, and certain adjustments are required due to the presence of the
nonlinearity |Du[P~2 in the definition of the p-Laplacian.

In the discussion above, the set 2 is assumed to be fixed. It is natural to ask how
the minimum of F} behaves when both i and Q2 are allowed to vary in an appropriate
sense. Our second result below addresses this scenario. More precisely, we will show



Fig. 2 Graph of the solution u(x,y) to problem (6) with p = 2 and h(z) = e*~Y. Left:
Q=B C RQ; Right! Q=B \ Bl/g.

that among all Lipschitz domains with fixed volume, the ball minimizes the value of
Fy,. This result constitutes a type of isoperimetric inequality and extends the work of
[14], where the linear case is considered.
In the last section of this paper, we study the eigenvalue problem:
—Apu = AuP~2y in €, (6)
hP~HDulP~29% 4 ju[P~2u =0 on 09.
Using the direct method in the calculus of variations, it is straightforward to show
that (6) admits a solution u € W1P(€2). Specifically, define the functional

P |ul? n—1
[Vul” dz + o1 dH
(u) _ JQ N

/ |ulP dx
Q

min {J,(u) 1 u € WHP(Q), u # 0}

JIh,

then any minimizer of

solves (6).
Our second result concerns the solution of the double minimization problem:

o .
A el M) "

and our final result is the analysis of the same double minimization problem when we
also allow the Lipschitz domain Q C R”™ to vary. That is, we consider the following
minimization problem:

min min min  Jy(u). 8
Q<1 h€eH,m ueWwlr(Q) h( ) ( )



Notation & Assumptions

- Q C RY is a bounded set with Lipschitz boundary.

- The space WP (£2) denotes the usual Sobolev space which is the closure of C§°(£2),
smooth functions with compact support using the Sobolev norm.

- For ¢ > 1, ¢’ denotes the Holder conjugate, i.e. % + % =1, and ¢* denotes the

Sobolev conjugate, defined by ¢* = I\‘}—qu >q.

- The letter C' will always denote a positive constant which may vary from place
to place.

- The Lebesgue measure of a set A C R™ is denoted by |A|.

- The N — 1 Hausdorff measure of a set A C R™ is denoted by HN~1(A).

- The symbol — denotes weak convergence.

2 Solution to the double minimization problem (5)

The following lemma will be used in the proof below.
Lemma 1. (Poincaré inequality) Let u € WP (Q). Then there exists a constant C > 0

such that v
/u|de<c[/ |Du|” dx + (/ |u|dHN1> } (9)

Proof. Suppose (9) is false. Then for there is a sequence u,, € WP(Q) such that

p
/ |un|P dz > n [/ | Du,, |P dx + (/ un|d7-[N1> } .
Q Q a0
P
/|Dun|1’dx+(/ |un|deN1) -0
Q a0

when n — 4o00. Without loss of generality we may assume

/ |twn|P dz = 1.
Q

Hence, up to a subsequence, u,, — u in WHP(Q), with Jo lul? dz = 1. But since

P
/ |Duy,|P dz — 0 and </ |un|dHN_1) -0
Q 09

one must have Du,, = Du = 0 strongly in LP(Q2), and u,, — u = 0 strongly in LP(912).
Hence u = 0, a contradiction. O

In particular,

Theorem 2. If Q is connected, the minimization problem (5) admits a unique solu-
tion. In particular, if Q = Br and f =1, then the optimal solution h(x) is constant,

given by
m

M) = N RV

and does not depend on p.



Proof. Note that given u € LP(992) with u # 0, the minimization problem

P
min{/ |u—|_1d7-[N_1 : hG'Hm}
aq WP

admits a unique solution. Indeed, define

; |ul

- (Jog lul dHN=1)"

Then, by Hélder’s inequality,

P P p—1
80 aq h? 80

which implies

P 1 p p
/ v s L (/ u|d7—lN_1) :/ [l vt
o hP~ mP== \Joa o9 hp=1

Thus, h is a minimizer. Uniqueness follows from the strict convexity of the functional
p
G(h) = |50 % dHN =1 and the fact that  is connected.
It follows that the minimization problem (5) is equivalent to

.1 1 vo1)’ . 1,
mln{p/ﬂ|Du|pd:c+mp_1p </Em|ud7-l > f/ﬂfu cuew p(Q)}. (10)

Notice that the functional

P
D Jo mP=ip \ Jon Q

is coercive by Lemma 1, albeit not differentiable. Additionally, the second and third
terms are trivially convex. A simple computation shows that [, [Du|” dx is strictly
convex. It follows that the minimization problem (10) has a unique solution.

Let us now assume that 2 = Bg and f = 1. A straightforward computation shows
that the radial function

B RV — |z|? m

we) = S+ (1)

is the unique solution to the Euler-Lagrange equation associated to (10), which reads
—Ay,u=1 in Bp,

p—1
0€ m”_l\DuV’_Q% + o(u) (/ ud%"_1> on 9Bk,
%]

Br



Fig. 3 Representation of By in R? with insulator material of constant thickness h(z) =
1

4r*

where ¢(u) is the subdifferential of the real valued function |¢|, t = ¢(u).
Note that the appearance of the incursion 0 € ... in the Euler-Lagrange equation
is due to the non differentiability of the functional

u lul dHN L.
a9

We conclude that when 2 = B we have

|u(@)| m

h(z) = = .
() =m (faﬂ Jul dHN—l) Nwy RN-1

It is possible to obtain a closed-form expression for

E(h)= min Fj(u).
(h) ein o) n(u)

Specifically, if u is a solution of (5), then by taking u as a test function in the weak
formulation (4), one obtains

E(h) = % /ﬂ fu.

In particular, when f = 1, minimizing F(h) is equivalent to maximizing the average
value of u over €. In the linear case, p = 2, the solution u is a model for temperature,
and in this case, the solution maximizes the average temperature in § (see [6] for
more).



A natural question is: what is the optimal domain for the minimization problem
(5)7 That is, if we allow the domain € to vary among all Lipschitz domains with fixed
volume, which one minimizes (5)7 This problem can be seen as a type of isoperimetric
inequality and remains open for p # 2 (it has been resolved in the case p = 2; see
[14]). The following Theorem answer this question if when p # 2.

Theorem 3. Suppose p > 2, f =1, m > 0 fized, and let (u,h) be the solution pair
obtained in Theorem 2. Then

/u dr < 1 - ( Np-1) \Q|p41rv]<vp(f;)l) + |sz(zf—1)m)7
Q Np’w]% p+N(p-1)

and equality holds if and only if Q is a ball.
Proof. For t > 0, define

Ui = {zx € Qu(x) > t},
UM = 9U, N Q, and U = 9U, N 69,

u(t) = |Utl,
P(t) = Per(Uy).

Now, given ¢,k > 0, consider the test function ¢ in (4), defined as

0, if0<u<t,
p=qu—t, ift<u<t+k,
k, ifu>t+k,

We obtain

p—2
/ \DulP dz + k/ [l LN
U\Upir ougs, P

p—2
+/ ful _lu(u—t)dHNflz/ (u—t)dx—i—k:/ dx
oup\augs, U\Uss Ursr

Dividing both sides by k and letting £k — 0 we have

p—2
,u(t):/ \Du|”_1d7-lN_1+/ ful S auN-t
aUtint 8Utext hp71

If we set

p—2 . 9
[u u ifxe aUtext

hp—1 >

|Du|P~L, if 2 € QUM
g(x) =



then the above expression becomes

p(t) = / gdH N
oU

Applying Hoélder’s inequality, we obtain

Por < (f ) </3U W dHN_l)

(12)
1 p—2 , h N_1
< p() =T P@E)»=1 | —p'(t) + T dH ~
augxt |ul
Recall the isoperimetric inequality:
N—-1 N
e\ _ [ P()
WN — \ Nwy '
Combining this with (12), we obtain
N DO < [ Baw,
augxt |ul
or equivalently,
1 ’ e e h N-1
p(t) < |~ (Ou(t)FETD + p(t) Ve T dH .
NP WX aUgxt |ul
Finally, integrating from 0 to 400, we have
+oo
1 N(p—-1 p+N(p—1) P
/ udxr = / ,Uf(t) dt < p ( (p ) |Q‘ }Fvlzfp—l)l 4 Q|N(P—1)m> .
) 0 Nl \P+ NP1
The explicit solution provided in (11) achieves equality in the inequality above.  [J

Remark 1. Although the above proof is not valid for 1 < p < 2 due to the lack of well-
definedness of certain expressions, we expect that a modified version of the argument
can be developed to address this range of p values.

3 The eigenvalule problem

Theorem 4. The minimization problem (7) admits a solution.



Proof. The proof of Theorem 2 can be readily adapted to this setting. Specifically, the
problem is equivalent to minimizing the functional

which admits a minimizer by standard arguments from the Calculus of Variations.
On the other hand, since the functional J(u) is not strictly convex, uniqueness of the
minimizer is not guaranteed.

O

As discussed above, an interesting open problem is to analyze the minimization
problem (7) when the Lipschitz domain {2 is allowed to vary.

Remarkably, the following non-existence result holds for certain values of p in this
setting.
Theorem 5. If Z%l < N, then the minimization problem (8) does not admit a

1
solution.

Proof. As before, the problem is equivalent to the minimization problem

1 p
/|Du|Pdm+ - (/ |u>
¢l Jo mP Q
/|u|pdx
Q

Taking v = 1 and considering the sequence €2 = By}, we obtain

X =in cu e WHP(Q)\ {0}, |9 <1

P Gl C7:7973) S e o
mp—l|Bl/k| T omp—1k(—1)N-p’

Letting £ — +o00, it follows that X = 0. Hence, the infimum is not attained by any
open set  C R, and the minimization problem (8) does not admit a solution. [

Remark 2. Ifp = 2, then 5%} = 3, and we recover the result known in the linear case.
Similarly, if p > 3, then (8) admits no solution for N > 2. On the other hand, when

2< N E,
p—1
we believe that the arguments used in the proof of Theorem 3 can be adapted to estab-
lish a Faber—Krahn-type isoperimetric inequality in this regime (see [9] for a related
problem). In particular, we conjecture that the ball remains a minimizer in this setting
as well. Complete proofs related to this Faber—Krahn-type isoperimetric inequality will
be presented elsewhere.
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