A NEW PROOF OF THE $C^{p'}$ -CONJECTURE IN THE PLANE VIA A PRIORI ESTIMATES

GENIVAL DA SILVA

ABSTRACT. In this note we discuss an alternative proof that weak solutions to

$$-\Delta_p u = f \in L^\infty(B_1)$$

are in $C_{loc}^{p'}(\Omega)$, where p > 2 and $\Omega \subseteq \mathbb{R}^2$. The first complete proof of this fact was given in [1], here we give an alternative argument.

INTRODUCTION

The purpose of this work is to prove the optimal regularity of weak solutions to p-Poisson equation

(1)
$$-\Delta_p u = f$$

in a bounded domain $\Omega \subseteq \mathbb{R}^2$ (which we will assume is the open unit ball $\Omega = B_1$), with a bounded source $f \in L^{\infty}(B_1)$, where we assume p > 2.

A solution to (1) is given by a function $u \in \mathbf{W}^{1,p}(B_1)$ satisfying:

$$\int_{B_1} |Du|^{p-2} Du D\varphi = \int_{B_1} f\varphi, \quad \forall \varphi \in \mathcal{C}^\infty_0(B_1)$$

Whenever we take f = 0 in the definition above, we say u is p-harmonic. The first major result concerning the regularity of p-harmonic functions was given in [5], namely, $u \in C_{loc}^{1,\alpha}$ for some small $\alpha > 0$. In [2], the author gives an alternative and simplified proof of the same result.

It is natural to ask what is the optimal value for the α described above. In the two dimensional case, the authors of [3] found the optimal regularity of p-harmonic functions. The proof given in [3] suggested that p' could have an important hole when f is taken to be nontrivial. Here $p' = 1 + \frac{1}{p-1}$ denotes the Holder conjugate of p.

If f is constant, the trivial example $u(x) = |x|^{p'}$ shows that it's reasonable to expect that $\alpha \leq \frac{1}{p-1}$. This motivates the following:

Conjecture 1. Let p > 2 and $f \in L^{\infty}(B_1)$. The optimal regularity for a weak solution $u \in \mathbf{W}^{1,p}(B_1)$ to the equation

 $-\Delta_p u = f$

is $u \in C_{loc}^{p'}(B_1)$.

²⁰²⁰ Mathematics Subject Classification. 35J92,35J15,35J62.

Key words and phrases. $C^{p'}$ -conjecture, p-laplacian, 2 dimensions.

The author thanks E. Texeira and X. Ros-Oton for useful comments and suggestions.

GENIVAL DA SILVA

In [4], the conjecture is almost solved, in the sense that it was shown that $u \in C_{loc}^{p'-\epsilon}(B_1)$ for every $\epsilon > 0$. Using different arguments, the conjecture was finally solved in [1]. The idea of the proof was to deform solutions of (1) into p-harmonic functions and to use the known regularity of p-harmonic functions given by [3].

Using a different approach we shall give a proof of the following theorem.

Theorem 1. Let p > 2. Then the p'-conjecture is true in the plane.

The idea of our method is based on a-priori estimates.

PROOF OF THEOREM 1

It's enough to prove the following:

Lemma A. Let p > 2 and u(x) be a $C^{p'}$ weak solution to the equation

$$-\Delta_p u = f,$$

where $f \in L^{\infty}(B_1)$. Then there exists C > 0, independent of u, such that

$$\|u\|_{C^{p'}(B_{\frac{1}{2}})} \leq C\left(\|u\|_{\infty} + \|f\|_{\infty}^{\frac{1}{p-1}}\right)$$

Proof. By interpolation, It suffices to show that for any delta $\delta > 0$ there exists $C_{\delta} > 0$ such that

(2)
$$[Du]_{C^{\frac{1}{p-1}}(B_{\frac{1}{2}})} \leq \delta[Du]_{C^{\frac{1}{p-1}}(B_{1})} + C_{\delta}\left(\|Du\|_{\infty} + \|f\|_{\infty}^{\frac{1}{p-1}}\right)$$

Suppose that 2 doesn't hold. Then there exists $\delta > 0$, such that for each $k \in \mathbb{N}$, we can find u_k and f_k such that

$$-\Delta_p u_k = f_k$$

but

(3)
$$[Du_k]_{C^{\frac{1}{p-1}}(B_{\frac{1}{2}})} > \delta[Du_k]_{C^{\frac{1}{p-1}}(B_1)} + k\left(\|Du_k\|_{\infty} + \|f_k\|_{\infty}^{\frac{1}{p-1}} \right)$$

Choose $x_k, y_k \in B_{\frac{1}{2}}$ such that

(4)
$$\frac{|Du_k(x_k) - Du_k(y_k)|}{|x_k - y_k|^{\frac{1}{p-1}}} \ge \frac{1}{2} [Du_k]_{C^{\frac{1}{p-1}}(B_{\frac{1}{2}})}$$

If we set $r_k := \frac{|x_k - y_k|}{2}$ and $s_k := \frac{x_k + y_k}{2}$, we can use (3) to conclude that $r_k \to 0$. Consider the second order increment around s_k :

(5)
$$\tilde{u}_{k}(x) = \frac{u_{k}(s_{k} + r_{k}x) + u_{k}(s_{k} - r_{k}x) - 2u_{k}(s_{k})}{r_{k}^{p'}[Du_{k}]_{C^{\frac{1}{p-1}}(B_{k})}}$$

defined on $B_{\frac{1}{2r_k}}$ We obviously have $\tilde{u_k}(0) = 0$ and $D\tilde{u_k}(0) = 0$. Moreover, if we set $z_k = \frac{x_k - y_k}{2r_k} \in \mathbb{S}^{n-1}$, then

(6)
$$|\tilde{u}_k(x)| \le 2|x|^{p'} \text{ and } [D\tilde{u}_k]_{C^{\frac{1}{p-1}}(B_{\frac{1}{2r_k}})} \le 2$$

by (4) we have

(7)
$$|D\tilde{u}_k(z_k)| > \frac{\delta}{2}$$

 $\mathbf{2}$

A NEW PROOF OF THE ${{\mathbb C}^p}'\text{-}{\rm CONJECTURE}$ IN THE PLANE VIA A PRIORI ESTIMATES 3

It follows that \tilde{u}_k is locally bounded, and bounded in the $C^{p'}$ -norm, hence by Arzela-Ascoli, it converges (up to a subsequence) locally uniformly to a $C^{p'}$ -function $\tilde{u}(x)$ defined on the whole \mathbb{R}^n .

Let $z_k \to z$ (up to a subsequence), then

(8)
$$D\tilde{u}(0) = 0, [D\tilde{u}]_{C^{\frac{1}{p-1}}(\mathbb{R}^n)} \le 2 \text{ and } |D\tilde{u}(z)| > \frac{\delta}{2}.$$

We claim \tilde{u} is p-harmonic in \mathbb{R}^n . Consider $-\Delta_p \tilde{u_k} = \tilde{f}_k$ for $x \in B_{1/2r_k}$. For $\varphi \in \mathcal{C}_0^{\infty}(B_1)$, take k large enough such that $\operatorname{supp} \varphi \subseteq B_{1/2r_k}$, we have: (9)

$$\int |D\tilde{u_k}|^{p-2} D\tilde{u_k} D\varphi \leq \int \frac{|Du_k(s_k + r_k x)|^{p-2} + |Du_k(s_k - r_k x)|^{p-2}}{r_k [Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}} \cdot [Du_k(s_k + r_k x) - Du_k(s_k - r_k x)] D\varphi$$
$$= I + II + III + IV$$

We analyze I, II, III and IV separately. We have:

$$|I| = \left| \int \frac{|Du_k(s_k + r_k x)|^{p-2} Du_k(s_k + r_k x) D\varphi(x)}{r_k [Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}} \right|$$
$$= \left| \int \frac{|Du_k(y)|^{p-2} Du_k(y) D_y \varphi((y - s_k)/r_k) r_k^{1-n}}{r_k [Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}} \right|$$

(10)

$$\leq \int \frac{|f_k(s_k + r_k x)\varphi(x)|}{[Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}}, \text{ using Holder's inequality we obtain}$$

$$\leq \frac{\|f_k\|_{\infty} \|\varphi\|_1}{[Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}}, \text{ now by (3) we have}$$

$$< \frac{\|\varphi\|_1}{k^{p-1}}.$$

In a complete analogous way, we obtain

$$|IV| \leq \frac{\left\|\varphi\right\|_1}{k^{p-1}}.$$

Notice that |II| = |III|. Also,

$$(11)$$

$$|II| = \left| -\int \frac{|Du_k(s_k + r_k x) - Du_k(s_k - r_k x) + Du_k(s_k - r_k x)|^{p-2} Du_k(s_k - r_k x) D\varphi(x)}{r_k [Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}} \right| \\ \leq \int \frac{[r_k|x|]^{\frac{p-2}{p-1}} [Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-2}}{r_k [Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}} \\ + \left| \int \frac{|Du_k(s_k - r_k x)|^{p-2} Du_k(s_k - r_k x) D\varphi(x)}{r_k [Du_k]_{C^{\frac{1}{p-1}}(B_1)}^{p-1}} \right|, \text{ using (3) we obtain} \\ \leq \left(\frac{1}{2}\right)^{\frac{p-2}{p-1}} \frac{\|D\varphi\|_1}{k} + \frac{\|\varphi\|_1}{k^{p-1}}$$

We conclude that when $k \to \infty$, $\tilde{f}_k \to 0$. Therefore, $\tilde{u}(x)$ satisfies $-\Delta_p \tilde{u}(x) = 0$, i.e. \tilde{u} is p-harmonic.

The following lemma is proved in [4]

Lemma B. (Liouville's Theorem) Let p > 2. If u is an entire p-harmonic function in \mathbb{R}^2 satisfying

 $\left\| u \right\|_{\infty} \leq C R_{j}^{p'}$

for some sequence $R_j \to \infty$ then Du is constant.

By (6) and the lemma above, $D\tilde{u}$ is constant, a contradiction to (7)

Let u satisfies $-\Delta_p u = f$ and ρ_δ be the standard mollifier. Consider the boundary problem

$$\begin{cases} \Delta_p u_{\epsilon} + \epsilon \Delta u_{\epsilon} = f * \rho_{\delta} \text{ in } B_1 \\ u_{\epsilon} = u * \rho_{\delta} \text{ on } \partial B_1 \end{cases}$$

One can easily modify the argument above, and conclude by lemma A that

$$\|u_{\epsilon}\|_{C^{p'}(B_{\frac{1}{2}})} \le C\left(\|u_{\epsilon}\|_{\infty} + \|f*\rho_{\delta}\|_{\infty}^{\frac{1}{p-1}}\right).$$

On the other hand, elementary properties of mollifiers leads to

$$\left\|u_{\epsilon}\right\|_{\infty} \leq \left\|u\right\|_{\infty} \text{ and } \left\|f*\rho_{\delta}\right\|_{\infty} \leq \left\|f\right\|_{\infty}$$

We conclude that $\|u_{\epsilon}\|_{C^{p'}(B_{\frac{1}{2}})}$ is uniformly bounded for every $\epsilon > 0$, so up to a subsequence, $u_{\epsilon} \to v$ locally uniformly when $\epsilon, \delta \to 0$, moreover $v \in C^{p'}(B_{\frac{1}{2}})$. By uniqueness of the solution, we must have $u \equiv v$.

4

A NEW PROOF OF THE ${{\mathbb C}^p}'$ -CONJECTURE IN THE PLANE VIA A PRIORI ESTIMATES 5

References

- D.J. Araújo, E.V. Teixeira, J.M. Urbano, A proof of the C^{p'}-regularity conjecture in the plane, Adv. Math. 316 (2017) 541–553.
- [2] L.C. Evans, A new proof of local C^{1,α} regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations 45 (1982) 356–373.
- [3] T. Iwaniec, J. Manfredi, Regularity of p-harmonic functions on the plane, Rev. Mat. Iberoam. 5 (1989) 1–19.
- [4] E. Lindgren, P. Lindqvist, Regularity of the p-Poisson equation in the plane. JAMA 132, 217-228 (2017). https://doi.org/10.1007/s11854-017-0019-2
- [5] N. Uraltseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968) 184–222.

Department of Mathematics, Texas A&M University San Antonio Email address: gdasilva@tamusa.edu URL: https://www.gdasilvajr.com