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Abstract

In this work we study the existence and regularity of solutions to the following
equation:

∆pu + g(x)u =
λ

|x|p |u|
p−2u + f,

where 1 < p < N and f ∈ Lm(Ω), where m ≥ 1.

Keywords: elliptic equation, p-laplacian, regularity, existence

MSC Classification: 35J92 , 35J15 , 35B65 , 35A01

1 Introduction

In a recent paper Arcoya et al. (2022), building up on the previous work Boccardo
et al. (2006), the authors study the existence and summability of the problem:{

−div(M(x)u) + g(x)u = λ
|x|pu+ f in Ω,

u(x) = 0 on ∂Ω,
(1)

where M(x) is positive matrix such that M(x)ξ ·ξ > α|ξ|2, g(x) ≥ 0, 0 < λ < α(N−2
2 )2

and f ∈ L1(Ω).
In these notes we will study the equivalent problem for the p-Laplacian, namely:{

−∆pu+ g(x)u = λ
|x|p |u|

p−2u+ f in Ω,

u(x) = 0 on ∂Ω,
(2)
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for 1 < p < N . The crucial component of our analysis is the Hardy inequality:

Theorem. (Hardy’s inequality) If v ∈ W1,p
0 (Ω) and 1 < p < N then

Hp

∫
Ω

|v|p

|x|p
≤

∫
Ω

|Dv|p, (3)

where the constant H =
(

N−p
p

)
is optimal.

The idea of all the proofs is essentially the same: truncate and obtain boundedness
estimates. It’s remarkable that we can apply the same methods of the linear case to
this quasilinear case, despite the nonlinearities.

The upshot is that Hardy’s inequality provides a way to control the nonlinearity
in terms of the Sobolev norm, which is essentially what we are trying to estimate.

The main challenges of problem (2) are the low summability of the source f which
puts the right hand side outside the dual of W1,p

0 (Ω), and the nonlinearity with super-
linear growth in case p > 2 (for more on this type of problem see da Silva (2024)),
which poses an obstacle to existence and high regularity.

The idea of truncating an equation in order to obtain estimates is not new, it
was consolidated by Stampacchia Stampacchia (1965), who proved an equivalent of
Calderon-Zygmund Lp-estimates for equations with discontinuous coefficients. How-
ever, the method is not invincible, in some cases the existence of solutions is not
guaranteed, even for bounded sources; nevertheless, in these notes this method will be
successful due to the pivotal hole of Hardy’s inequality in obtaining the estimates.

The paper is organized as follows: In section 2, we analyze the case with no lower
order term, where we analyze two scenarios: high summability of the source, meaning f
is in the dual of W1,p

0 (Ω); and low summability of the source, where we take the source
in Lm(Ω) with m > 1. In section 3 we study the same problem with a added lower
order term, we are able to obtain under certain hypothesis existence and regularity of
the solutions.
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Notation

- Ω ⊂ RN is a bounded domain.
- The spaceW1,p

0 (Ω) denotes the usual Sobolev space which is the closure of C∞
0 (Ω),

smooth functions with compact support, in the p-norm.
- For 1 < p < ∞, the p-Laplacian ∆p is given by −div(|Du|p−2Du).
- For q > 1, q′ denotes the Holder conjugate, i.e. 1

q + 1
q′ = 1, and q∗ denotes the

Sobolev conjugate, defined by q∗ = qN
N−q > q, where N is the dimension of the

domain Ω ⊂ R.
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- We will use the somewhat standard notation for Stampacchia’s truncation
functions (see Boccardo and Croce (2013)):

Tk(s) = max{−k,min{s, k}}, Gk(s) = s− Tk(s), for k > 0.

- The letter C will always denote a positive constant which may vary from line to
line.

- The Lebesgue measure of a set A ⊆ RN is denoted by |A|.
- The symbol ⇀ denotes weak convergence.
- The letter S denotes the best constant in Sobolev’s inequality ∥u∥

p∗ ≤ S∥Du∥
p
,

see Talenti (1976) for its value.

2 The case g(x) = 0 and p ≥ 2.

In this section we analyze the Dirichlet problem:{
−∆pu = λ

|x|p |u|
p−2u+ f in Ω,

u(x) = 0 on ∂Ω,
(4)

when p ≥ 2, 0 < λ < Hp and f ∈ Lm(Ω) for a suitable m ≥ 1.
We begin by considering the “truncated system” system:

−div(|Dun|p−2Dun) =

(
λ

|x|p + 1
n

)(
|un|p−2un

1 + 1
n |un|p−1

)
+ fn (5)

where fn = Tn(f). The classical theory of Leray-Lions operators guarantee the
existence of a unique solution un ∈ W1,p

0 (Ω) ∩ L∞(Ω).

2.1 High summability: f ∈ Lm(Ω) with m ≥ (p∗)′.

Theorem 1. Suppose f ∈ Lm(Ω) with (p∗)′ ≤ m < N
p and :

0 < λ <
(m− 1)N(N −mp)p−1

(p− 1)p−1mp
(6)

Then the Dirichlet problem (4) has a solution u ∈ W1,p
0 (Ω)∩Ls(Ω), where s = mN

N−pm .

Proof. Take φ = 1
γ−p+1 |un|γ−pun as a test function in (5), where γ ≥ p is a number to

be chosen. If γ = p, we can easily see that ∥Dun∥
p
≤ C, so un is bounded in W1,p

0 (Ω)

and hence un ⇀ u up to a subsequence. On the other hand, if γ > p we have:∫
Ω

|Dun|p|un|γ−p ≤ λ

γ − p+ 1

∫
Ω

|un|γ

|x|p
+

1

γ − p+ 1

∫
Ω

|f(x)||un|γ−p+1.
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Rearranging using Hardy’s inequality (3) with v = |un|
γ
p

pp

γp

∫
Ω

|D|un|
γ
p |p ≤ λ

Hp(γ − p+ 1)

∫
Ω

|D|un|
γ
p |p + 1

γ − p+ 1

∫
Ω

|f(x)||un|γ−p+1.

That is,

(
pp

γp
− λ

Hp(γ − p+ 1)

)∫
Ω

|D|un|
γ
p |p ≤ 1

γ − p+ 1
∥f∥

m

(∫
Ω

|un|(γ−p+1)m′
) 1

m′

where we have used Holder’s inequality in the last integral.
Choosing γ such that γp∗

p = (γ − p+ 1)m′ = (p− 1)s, that is

γ =
(p− 1)m(N − p)

N − pm
,

we obtain:(
pp

γp
− λ

Hp(γ − p+ 1)

)(∫
Ω

|un|
γp∗
p

) p
p∗ − 1

m′ =
1
s

≤ 1

γ − p+ 1
∥f∥

m

In order for this to be meaningful, we must require γ ≥ p and pp

γp > λ
Hp(γ−p+1) , that is:

(p∗)′ ≤ m <
N

p
and 0 < λ <

ppHp(γ − p+ 1)

γp
=

(m− 1)N(N −mp)p−1

(p− 1)p−1mp

We conclude that

∥un∥
s
≤ C∥f∥

m

for some C > 0 that doesn’t depend on n. Therefore, un → u with u ∈ Ls(Ω). We can
easily see that u is a weak solution by passing the limit in (5).

Remark 1. If p = 2, we recover Theorem 2.1 in Boccardo et al. (2006).

Remark 2. Notice the contrast between this case and the case ∆pu = f (treated for
example in Boccardo and Croce (2013)). In the latter, we only need (p∗)′ ≤ m < N

p ,
whereas in the former an additional restriction has to be made in order to have the
same regularity.

Remark 3. The inequality (6) is actually optimal as the example in (Boccardo et al.,
2006, Ex. 2.2) shows. The author construct a radial example in the case p = 2,λ =
(m−1)N(N−mp)p−1

(p−1)p−1mp and shows that the solution u /∈ Ls(Ω).
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2.2 Low summability: f ∈ Lm(Ω) with 1 < m < (p∗)′

In this scenario, the right hand side in (4) is not in W−1,p′
(Ω), hence we can’t apply

classical existence results despite the coercivity.

Theorem 2. Suppose f ∈ Lm(Ω) with 1 < m < (p∗)′ and

0 < λ <
(m− 1)N(N −mp)p−1

(p− 1)p−1mp
. (7)

Then the Dirichlet problem (4) has a distributional solution u ∈ W1,q
0 (Ω), where

q = pmN
−Np+m(N(p−2)+p) .

Proof. Take φ = [(t + |un|)γ−p+1 − tγ−p+1]sgn(un) as a test function in (5), where
γ ≥ 1 is a number to be chosen. We have:

(γ−p+1)

∫
Ω

|Dun|p(t+|un|)γ−p ≤ λ

∫
Ω

|un|p−2unφ

|x|p
+

∫
Ω

|f(x)||(t+|un|)γ−p+1−tγ−p+1|

(8)
Rearranging this we obtain:

(γ − p+ 1)pp

γp

∫
Ω

|D[(t+ un)
γ
p − t

γ
p ]|p ≤ λ

∫
Ω

|(t+ un)
γ
p − t

γ
p |p

|x|p
+ λ

∫
Ω

1

|x|p
(
|un|p−2unφ− |(t+ un)

γ
p − t

γ
p |p

)
+

∫
Ω

|f(x)||(t+ |un|)γ−p+1 − tγ−p+1|

Using Hardy and Sobolev inequalities we get:

Sp

(
(γ − p+ 1)pp

γp
− λ

Hp

)(∫
Ω

|(t+ un)
γ
p |p

∗
) p

p∗

≤ λ

∫
Ω

1

|x|p
(
|un|p−2unφ− |(t+ un)

γ
p − t

γ
p |p

)
+

∫
Ω

|f(x)||(t+ |un|)γ−p+1 − tγ−p+1|

If we fix n and let t → 0 we obtain:

Sp

(
(γ − p+ 1)pp

γp
− λ

Hp

)(∫
Ω

|un|
γp∗
p

) p
p∗

≤ ∥f∥
m

(∫
Ω

|un|(γ−p+1)m′
) 1

m′

Now we choose γ such that γp∗

p = (γ − p+ 1)m′, that is we choose

γ = (p− 1)
m(N − p)

N −mp
.

We conclude using (7) that
∥un∥

s
≤ C∥f∥

m
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where s = mN
N−pm .

Notice that by (8) we also have for a fixed t > 0:∫
Ω

|Dun|p

(t+ |un|)p−γ
≤ C,

hence, fix α > 1 we have:∫
Ω

|Dun|α ≤
∫
Ω

|Dun|α

(t+ |un|)
(p−γ)α

p

(t+ |un|)
(p−γ)α

p ,

Using Holder Inequality with p
α and p

p−α :

∫
Ω

|Dun|α ≤ C

(∫
Ω

(t+ |un|)
(p−γ)α
p−α

) p−α
p

,

Let’s choose α such that (p−γ)α
p−α = s , that is ,

α =
pmN

−Np+m(N(p− 2) + p)
,

which is positive and greater than 1, since we took m < (p∗)′.
We conclude that

∥Dun∥
α
≤ C,

so up to a subsequence, un ⇀ u in W1,α
0 (Ω).

We can easily see that this u is a distributional solution, see for instance Boccardo

and Murat (1992). (Notice that |un|p−1un

|x|p → |u|p−1u
|x|p in L1(Ω)).

Remark 4. If p = 2, we recover Theorem 3.1 in Boccardo et al. (2006).

3 The case g(x) ≥ 0: Regularity gain

In this section we analyze the following problems:{
−∆pu+ g(x)u = λ

|x|p |u|
p−2u+ f in Ω,

u(x) = 0 on ∂Ω,
(9)

when 0 < λ < Hp and f, g ∈ L1(Ω).
Recall that the reason for choosing 0 < λ < Hp is to ensure the coercivity of

the operator T (u) = −∆pu − λ
|x|p |u|

p−2u. In this case, the lower order term allow us

to obtain not only a distributional solution but a weak solution in W1,p
0 (Ω), where
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by a weak solution we mean u ∈ W1,p
0 (Ω) such that g(x)u ∈ L1(Ω) and for every

φ ∈ W1,p
0 (Ω) ∩ L∞(Ω) we have:∫

Ω

|Du|p−2Du ·Dφ+

∫
Ω

g(x)uφ =

∫
Ω

λ

|x|p
|u|p−2uφ+

∫
Ω

f φ

3.1 (possibly) unbounded solutions

Theorem 3. Suppose p ≥ 2 and there is a M > 0 such that

|f(x)| ≤ Mg(x). (10)

Then the Dirichlet problem (9) has a weak solution u ∈ W1,p
0 (Ω). Moreover, u ∈ Ls(Ω)

for any s ∈ [p∗, sλ), where sλ is the unique solution to the following equation:

λ =
Hp[p( sλp∗ − 1) + 1]

( sλp∗ )p
.

Proof. We consider the truncated equation

−∆pun +
g(x)

1 + M
n g(x)

un =
λ

|x|p + 1
n

|un|p−2un

1 + |un|p−1

n

+
f

1 + |f |
n

(11)

Classical Leray-Lions theory guarantees the existence of a weak solution un ∈
W1,p

0 (Ω) ∩ L∞(Ω), see for example Theorem 5.1 or Example 9.12 in Boccardo and
Croce (2013).

Set gn = g(x)

1+M
n g(x)

and fn = f

1+
|f|
n

, by hypothesis we have:

|fn(x)| ≤ Mgn(x). (12)

Now, take φ = un as a test function in (11), we have:∫
Ω

|Dun|p +
∫
Ω

gnu
2
n ≤ λ

∫
Ω

1

|x|p + 1
n

|un|p

1 + |un|p−1

n

+

∫
Ω

|fnun|

Using (12), we have:∫
Ω

|Dun|p +
∫
Ω

gnu
2
n ≤ λ

∫
Ω

|un|p

|x|p
+M

∫
Ω

gn|un|

By Hardy’s inequality:∫
Ω

|Dun|p +
∫
Ω

gnu
2
n ≤ λ

Hp

∫
Ω

|Dun|p +M

∫
Ω

gn|un|
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Rearranging, we obtain:(
1− λ

Hp

)∫
Ω

|Dun|p ≤
∫
Ω

gn|un|(M − |un|).

Using the trivial fact that the parabola x(M − x) has a maximum value of M2 if
0 ≤ x ≤ M , we conclude that:(

1− λ

Hp

)∫
Ω

|Dun|p ≤ M2

∫
Ω

gn ≤ M2

∫
Ω

g.

Therefore, un is bounded in W1,p
0 (Ω) and hence un ⇀ u for some u ∈ W1,p

0 (Ω).
As before, we can easily pass the limit and conclude that u is a solution. The term
gn(x)un is the tricky one, however Hardy’s inequality and Vitali’s convergence theorem
guarantees the L1(Ω) convergence.

We now prove the regularity of u ∈ W1,p
0 (Ω). It’s enough to prove that un is

bounded in Ls(Ω). Take φ = |un|p(γ−1)un as a test function in (11), for some γ ≥ 1
to be chosen later. We have:

(p(γ−1)+1)

∫
Ω

|Du|p|un|p(γ−1)+

∫
Ω

gn|un|p(γ−1)u2
n ≤ λ

∫
Ω

|un|pγ

|x|p
+

∫
Ω

|fn||un|p(γ−1)+1.

Reasoning as before, we apply Hardy’s inequality and use (12) to obtain:(
p(γ − 1) + 1

γp
− λ

Hp

)∫
Ω

|D|un|γ |p +
∫
Ω

gn|un|p(γ−1)+2 ≤ M

∫
Ω

gn|un|p(γ−1)+1.

Simplifying we get:(
p(γ − 1) + 1

γp
− λ

Hp

)∫
Ω

|D|un|γ |p ≤
∫
Ω

gn|un|p(γ−1)+1(M − |un|).

As before, we can clearly see that the function xp(γ−1)+1(M − x) has a maximum for
0 ≤ x ≤ M . We have:(

p(γ − 1) + 1

γp
− λ

Hp

)∫
Ω

|D|un|γ |p ≤ Mp(γ−1)+2

∫
Ω

g.

By Sobolev’s inequality:(
p(γ − 1) + 1

γp
− λ

Hp

)
1

S

∫
Ω

|un|γp
∗
≤ Mp(γ−1)+2

∫
Ω

g.

In order for this to make sense, we must have:

λ <
Hp[p(γ − 1) + 1]

γp
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Let s = γp∗, and consider the function h(s) =
Hp[p( s

p∗ −1)+1]

( s
p∗ )p . Notice that if s = p∗

then h(s) = Hp and λ < Hp which is always true. Also, h(s) is decreasing in [p∗,∞),
so eventually it will hit λ, at a point s = sλ. In conclusion, the estimate is valid for
p∗ ≤ s < sλ.

Remark 5. The referee kindly pointed out that we could have considered the more
general term g(x)|u|p−2u in (9). Indeed, the proof would be the same the only difference
being the part where we analyze the maximum of x(M − xp−1).

3.2 Bounded solutions: 1 < p ≤ 2

Theorem 4. Suppose there are M > 0, N > 1 such that

|f(x)| ≤ Mg(x) and N
λ

|x|p
≤ g(x) (13)

If we assume 1 < p ≤ 2, then the Dirichlet problem (9) has a bounded weak solution
u ∈ W1,p

0 (Ω) ∩ L∞(Ω).

Proof. We consider the truncated equation again (slightly modified):

−∆pun + gn(x)un =
λ

|x|p + MNλ
n

|un|p−2un

1 + |un|p−1

n

+ fn (14)

Notice that

N
λ

|x|p + MNλ
n

≤ gn(x). (15)

Now, fix k > 0 and choose φ = Gk(un) as a test function in (14)(See the Notation
section for the definition of Gk(s)). We have:∫
Ω

|DGk(un)|p+
∫
Ω

gn(x)unGk(un) ≤
∫
Ω

λ

|x|p + MNλ
n

|un|p−1|Gk(un)|+
∫
Ω

|fnGk(un)|.

Using (15),(13) and the fact that sGk(s) ≥ 0 we obtain:∫
Ω

|DGk(un)|p+
∫
Ω

gn(x)|unGk(un)| ≤
∫
Ω

gn(x)

N
|un|p−1|Gk(un)|+M

∫
Ω

gn(x)|Gk(un)|.

Simplifying: ∫
Ω

gn(x)|Gk(un)|
(
|un|(1−

|un|p−2

N
)−M

)
≤ 0

Choose k ≫ 0 such that k(1− 1
k2−pN ) > M , for that k we must have

|Gk(un)| = 0
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Which is to say that ∥un∥∞ ≤ k. On the other hand, choosing φ = un as a test

function in (14): ∫
Ω

|Dun|p ≤
∫
Ω

λ

|x|p + MNλ
n

|un|p +
∫
Ω

|fnun|.

Using Hardy’s and Holder’s inequalities:(
1− λ

Hp

)∫
Ω

|Dun|p ≤ ∥f∥
1
∥un∥∞.

We conclude that un is bounded in W1,p
0 (Ω) ∩ L∞(Ω), hence up to a subsequence

un ⇀ u in W1,p
0 (Ω). Arguing as in the proof of theorem 3, we can pass the limit in

(14), hence u ∈ W1,p
0 (Ω) ∩ L∞(Ω) is a weak solution.

Remark 6. Notice that if p > 2, the argument in the proof the theorem 4 fails and we
believe it’s possible that unbounded solutions may exist even with the strong restriction
(13).

Remark 7. We could increase the difficulty of the problem treated in this section if
we had added a term of the form g(x)uθ−1u, the problem would still be solvable but
considerably more difficult since the θ would interact with the p in the estimates leading
to existence estimates depending on different values of θ and p. We plan to address
this question in future works.

Remark 8. The case p = 1 remains challenging, that is, existence and regularity for
the solution of the following problem:

div

(
Du

|Du|

)
+ g(x)u =

λ

|x|
u

|u|
+ f,

where f ∈ L1(Ω). We can’t use Hardy’s inequality, at least, not in its usual form. See
Chata and Petitta (2024) for a related problem.

References

Arcoya, D., Boccardo, L., Orsina, L.: Hardy potential versus lower order terms in
dirichlet problems: regularizing effects. Mathematics in Engineering 5(1), 1–14
(2022) https://doi.org/10.3934/mine.2023004

Boccardo, L., Croce, G.: Elliptic Partial Differential Equations Existence and Regu-
larity of Distributional Solutions. De Gruyter, Berlin, Boston (2013). https://doi.
org/10.1515/9783110315424 . https://doi.org/10.1515/9783110315424

Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solu-
tions to elliptic and parabolic equations. Nonlinear Analysis: Theory, Methods
Applications 19(6), 581–597 (1992) https://doi.org/10.1016/0362-546X(92)90023-8

10

https://doi.org/10.3934/mine.2023004
https://doi.org/10.1515/9783110315424
https://doi.org/10.1515/9783110315424
https://doi.org/10.1515/9783110315424
https://doi.org/10.1016/0362-546X(92)90023-8


Boccardo, L., Orsina, L., Peral, I.: A remark on existence and optimal summability
of solutions of elliptic problems involving hardy potential. Discrete and Continuous
Dynamical Systems 16(3), 513–523 (2006) https://doi.org/10.3934/dcds.2006.16.
513

Chata, J.C.O., Petitta, F.: Existence, non-existence and degeneracy of limit solutions
to p-Laplace problems involving Hardy potentials as p → 1+. The case of a critical
drift (2024). https://arxiv.org/abs/2401.15406v1

Silva, G.: Quasi-linear elliptic equations with superlinear convection (2024). https:
//arxiv.org/abs/2407.15194

Stampacchia, G.: Le problème de dirichlet pour les équations elliptiques du second
ordre à coefficients discontinus. Annales de l’Institut Fourier 15(1), 189–257 (1965)
https://doi.org/10.5802/aif.204

Talenti, G.: Best constant in sobolev inequality. Annali di Matematica Pura ed
Applicata 110(1), 353–372 (1976) https://doi.org/10.1007/BF02418013

11

https://doi.org/10.3934/dcds.2006.16.513
https://doi.org/10.3934/dcds.2006.16.513
https://arxiv.org/abs/2401.15406v1
https://arxiv.org/abs/2407.15194
https://arxiv.org/abs/2407.15194
https://doi.org/10.5802/aif.204
https://doi.org/10.1007/BF02418013

	Introduction
	The case g(x)=0 and p2.
	High summability: fLm() with m(p*)'.
	Low summability: fLm() with 1<m< (p*)'

	The case g(x)0: Regularity gain
	(possibly) unbounded solutions
	Bounded solutions: 1<p2


