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Abstract

We discuss the existence and regularity of solutions to the following Dirichlet
problem:{

−div
(

Du
(1+|u|)θ

)
= −div (|u|γE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(1)

where θ, γ > 0. An interesting feature of this problem is the interplay between
the two nonlinearities, the degeneracy and the power nonlinearity.
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1 Introduction

In these notes we study existence and regularity of solutions to a class of elliptic
problems whose basic model is{

−div
(

Du
(1+|u|)θ

)
= −div (|u|γE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(2)

where θ > 0, E(x) is a vector field and f(x) a function in Lm(Ω) with m ≥ 1.
More generally, we will focus on the following problem:{

−div(a(x, u)Du) = −div (|u|γE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(D)
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where γ is a fixed number, a(x, s) is a Caratheodory function which satisfies, for a.e.
x ∈ Ω, any s ∈ R:

α

(1 + |s|)θ
≤ a(x, s) ≤ β, (C)

where α, β are positive constants.
The summability of E(x) and f(x) will vary and will be specified below.

Remark 1. Condition (C) implies that the operator in problem (D) is not coercive,
hence the usual H1

0(Ω)-existence theory cannot be applied directly. Moreover, since
E(x) is not necessarily a potential, i.e. E = Dv, the equation is not always variational.

Most of our results will assume θ + γ small, the case where γ is large and θ = 0
has been recently described in [6]. Related results can also be found in [5, 13].

When θ > 1, nonexistence results exist are described in [1]. The rationale behind all
these results is that when the summability of E(x) and f(x) is high enough, bounded
weak solutions tend to exist, whereas in low summability cases we can only get dis-
tributional solution lying in some Sobolev space W1,q

0 (Ω), for some 1 < q < 2, and in
some cases, a smallness condition on the source f(x) is also required.

We will look for two types of solutions:
A weak solution, sometimes also called a finite energy solution, is a function

u ∈ H1
0(Ω) such that for f ∈ L2∗(Ω), |u|γE ∈ [L2(Ω)]n and we have:∫

Ω

a(x, u)DuDφ =

∫
Ω

|u|γE(x)Dφ+

∫
Ω

fφ ∀φ ∈ H1
0(Ω). (3)

A distributional solution is a function u ∈ W1,1
0 (Ω) such that f ∈ L1(Ω), |u|γE ∈

[L1
loc(Ω)]

n and we have:∫
Ω

a(x, u)DuDφ =

∫
Ω

|u|γE(x)Dφ+

∫
Ω

fφ ∀φ ∈ C∞
0 (Ω). (4)

Remark 2. Notice that every weak solution u ∈ H1
0(Ω), if there is one, is a

distributional solution by definition.

As mentioned above, nonexistence can occur when θ > 1. As a counterweight, in
the last section of this paper we add a lower order term to problem (D) and are able
to recover existence and regularity of solutions in this scenario as well.

Existence and regularity of solutions to quasilinear elliptic equations is an old and
interesting problem. The literature is vast, specially for semilinear equations, see for
example [9, 8, 10, 11, 3, 2, 4, 6], and for more comprehensive treatment see [12, 7].

Notation & Assumptions

- Ω ⊂ RN is a bounded domain and N ≥ 3.
- The space H1

0(Ω) denotes the usual Sobolev space which is the closure of C∞
0 (Ω),

smooth functions with compact support using the Sobolev norm.
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- For q > 1, q′ denotes the Holder conjugate, i.e. 1
q + 1

q′ = 1, and q∗ denotes the

Sobolev conjugate, defined by q∗ = qN
N−q > q.

- For p > 1, p∗ denotes (p∗)′, in particular, 2∗ = 2N
N+2 .

- We will use the somewhat standard notation for Stampacchia’s truncation
functions (see [7]):

Tk(s) = max{−k,min{s, k}}, Gk(s) = s− Tk(s), for k > 0.

- The letter C will always denote a positive constant which may vary from place
to place.

- The Lebesgue measure of a set A ⊆ RN is denoted by |A|.
- The symbol ⇀ denotes weak convergence.

2 Proof of the results

Fix n > 0, let fn(x) = Tn(f(x)) and En(x) = Tn(E(x)), the latter is the vector
field obtained from E(x) by truncating its components by n. Consider the truncated
equation:

−div(a(x, Tn(un))Dun) = −div (|Tn(un)|γEn) + fn(x)

A simple application of Schauder’s fixed point theorem guarantee the existence of
weak solution, i.e. a function un ∈ H1

0(Ω) satisfying∫
Ω

a(x, Tn(un))DunDφ =

∫
Ω

|Tn(un)|γEnDφ+

∫
Ω

fnφ ∀φ ∈ H1
0(Ω). (5)

Moreover, since the right hand side is bounded, classical regularity results imply that
un ∈ L∞(Ω) as well.

The following lemma will be needed below.

Lemma A. [7, Lem 6.2] Suppose f ∈ L1(Ω), and set

g(k) =

∫
Ω

|Gk(f)|.

Suppose
g(k) ≤ β|Ak|α

for some α > 1 and β > 0, where Ak = {|f | > k}. Then f ∈ L∞(Ω) and

∥f∥
∞

≤ Cβ

for some C = C(α,Ω).

2.1 When m, r are sufficiently large

In our first result below, we seek finite energy solutions, that is, bounded weak solutions
u ∈ H1

0(Ω). As mentioned in the introduction, the majority of results of this type
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require high summability on the source. The theorem below confirms that claim and
also requires an additional summability of the vector field E(x) as well.

Theorem 1. Suppose (C) holds with 0 < θ < 1 and 0 < γ < 1 satisfying

θ + γ < 1 and γ <
2

N − 2

and E ∈ [L2r(Ω)]N , f ∈ Lm(Ω), such that

r ≥ max

{
N

2− (N − 2)γ
,

(
1

θ + γ

)′
}
,

m > max

{
N

2
,

(
2

θ + 1

)′
}
,

(6)

Then the Dirichlet problem (D) has a bounded weak solution u ∈ H1
0(Ω) ∩ L∞(Ω).

Proof. The proof is divided in two steps: We first prove that un is bounded in H1
0(Ω),

and then we prove the boundedness in L∞(Ω).
Consider φ = [(1 + |un|)θ+1 − 1]sgn(un) as a test function in (5). We have

α(θ + 1)

∫
Ω

|Dun|2 ≤ (θ + 1)

∫
Ω

(1 + |un|)θ+γ |E||Dun|+
∫
Ω

|f |(1 + |un|)θ+1.

Applying Young’s inequality to the above twice we obtain

α(θ + 1)

2

∫
Ω

|Dun|2 ≤ 1

2α

∫
Ω

(1 + |un|)2(θ+γ)|E|2 +
∫
Ω

|f |(1 + |un|)θ+1, (7)

and∫
Ω

|Dun|2 ≤ 1

4

[∫
Ω

(1 + |un|)2r
′(θ+γ)

]
+C

[∫
Ω

|E|2r +
∫
Ω

|f |m
]
+
1

4

[∫
Ω

(1 + |un|)m
′(θ+1)

]
,

(8)
Since 2r′(θ + γ) ≤ 2 and m′(θ + 1) ≤ 2, by Poincare inequality it follows that:∫

Ω

|Dun|2 ≤ C

[
1 +

∫
Ω

|E|2r +
∫
Ω

|f |m
]
,

hence ∥un∥
2∗

≤ C and up to a subsequence un ⇀ u in H1
0(Ω).

Now, we prove that un is bounded in L∞(Ω). Define

H(s) =

∫ s

0

1

(1 + |s|)θ
.
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Set Ak = {x ∈ Ω |H(un) > k}, taking φ = Gk(H(un)) as a test function in (5) we
obtain

α

∫
Ak

|DH(un)|2 ≤
∫
Ak

|un|γ |E||DH(un)|+
∫
Ak

|f |Gk(H(un))

Simplifying using Holder’s inequality:

α

∫
Ak

|DH(un)|2 ≤
(∫

Ak

|un|2γ |E|2
) 1

2
(∫

Ak

|DH(un)|2
) 1

2

+

(∫
Ak

|f |2∗
) 1

2∗
(∫

Ak

|DH(un)|2
) 1

2

where we have used Poincare’s inequality on the last term to the right. We conclude
that

α

(∫
Ak

|DH(un)|2
) 1

2

≤
(∫

Ak

|un|2γ |E|2
) 1

2

+

(∫
Ak

|f |2∗
) 1

2∗

Using Holder’s inequality again:

α

(∫
Ak

|DH(un)|2
) 1

2

≤
(∫

Ak

|un|2
∗
) γ

2∗
(∫

Ak

|E|2(
2∗
2γ )

′
) 2∗−2γ

22∗

+ ∥f∥
m
|Ak|

m−2∗
2∗m ,

Now, by Sobolev’s inequality:

(∫
Ak

|Gk(H(un))|2
∗
) 1

2∗

≤ C

(
∥E∥

2r
|Ak|

2r− 22∗
2∗−2γ
2r

2∗−2γ
22∗ + ∥f∥

m
|Ak|

m−2∗
2∗m

)
,

Finally, recall that:

∫
Ak

|Gk(H(un))| ≤
(∫

Ak

|Gk(H(un))|2
∗
) 1

2∗

|Ak|
1
2∗

Combing this with the condition (6), we conclude that by Lemma A, ∥H(un)∥∞ ≤ C,

but since lims→±∞ H(s) = ±∞, we deduce

∥un∥∞ ≤ C.

By the dominated convergence theorem, we can easily pass the limit in the first
integral in (5). Similarly, we can pass the limit in the third integral, the only part not
so obvious is the second integral.

Notice that given M ⊂ Ω measurable set:

∫
M

(|Tn(un)|γEn)Dφ ≤ C∥Dφ∥
2
∥un∥γ

∞

(∫
M

|E|2
) 1

2

Therefore, the integral above is equi-integrable and the result follows from Vitali’s
convergence theorem.
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2.2 Low summability of E(x), i.e. E ∈ [L2(Ω)]N

In our next result, we drop the summability assumption on E(x) and as a result,
finite energy solutions are not guaranteed to exist anymore and we can only hope for
distributional solutions as the theorem below shows.

Theorem 2. Suppose (C) holds with 0 < θ < 1 and 0 < γ < 1 satisfying

θ + 2γ < 1,

E ∈ [L2(Ω)]N , f ∈ Lm(Ω) with m > q∗

q∗−1+θ+2γ , where q = 2N(1−θ−γ)
N−2(θ+γ) . Then the

Dirichlet problem (D) has a distributional solution u ∈ W1,q
0 .

Proof. Set φ = [(1 + |un|)λ − 1]sgn(un) as a test function in (5), where λ < 1 will be
specified later. We have

αλ

∫
Ω

(1 + |un|)λ−1−θ|Dun|2 ≤ λ

∫
Ω

(1 + |un|)γ+λ−1|E||Dun|+
∫
Ω

|f ||un|λ

Using Young’s inequality we obtain:

αλ

∫
Ω

(1+|un|)λ−1−θ|Dun|2 ≤ 1

2α

∫
Ω

|E|2+αλ

2

∫
Ω

(1+|un|)2(γ+λ−1)|Dun|2+
∫
Ω

|f ||un|λ

Now choose λ = 1− θ − 2γ, simplifying we have:

α(1− θ − 2γ)

2

∫
Ω

|Dun|2

(1 + |un|)2(θ+γ)
≤ 1

2α

∫
Ω

|E|2 +
∫
Ω

|f ||un|λ. (9)

For any q < 2, by Holder’s inequality using 2
q and ( 2q )

′:

C

(∫
Ω

|un|q
∗
) q

q∗

≤
∫
Ω

|Dun|q ≤
∫
Ω

(1 + |un|)q(θ+γ)|Dun|q

(1 + |un|)q(θ+γ)

≤
(∫

Ω

|Dun|2

(1 + |un|)2(θ+γ)

) q
2
(∫

Ω

(1 + |un|)
2q(θ+γ)

2−q

) 2−q
2

(10)

Combining this with (9):

(∫
Ω

|un|q
∗
) 2

q∗

≤ C

(∫
Ω

(1 + |un|)
2q(θ+γ)

2−q

) 2−q
q
[

1

2αλ

∫
Ω

|E|2 +
∫
Ω

|f ||un|λ
]
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Set q = 2N(1−θ−γ)
N−2(θ+γ) , then q∗ = 2q(θ+γ)

2−q and 2
q∗ > 2−q

q . We have:

(∫
Ω

|un|q
∗
) 2

q∗ − 2−q
q

≤ C

[∫
Ω

|E|2 +
∫
Ω

|f |m +

∫
Ω

|un|λm
′
]

Since m satisfies q∗ = λm′ we obtain

∥un∥
q∗

≤ C,

Notice that by (10) we also have:

∥Dun∥
q
≤ C.

It follows that un is bounded in W1,q
0 and up to subsequence un ⇀ u.

By the dominated convergence theorem, we can easily pass the limit in the first
integral in (5) if we assume φ ∈ C∞

0 (Ω). As before, the only nontrivial part is the
second integral.

Notice that given M ⊂ Ω measurable set:

∫
M

(Tn(un)
γEn)Dφ ≤ C∥Dφ∥

∞
∥un∥γ

q∗

(∫
M

|E|
q∗

q∗−γ

) q∗−γ
q∗

Therefore, the integral above is equi-integrable and the result follows from Vitali’s
convergence theorem.

3 The presence of lower order term

In this last section we consider the effects on the existence and regularity of the
presence of a lower order term in problem (D). More precisely, we consider{

−div(a(x, u)Du) + u = −div (|u|γE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(L)

where γ > 0 and a(x, s) satisfies (C).
Similar to the previous case, for a fixed n > 0, Schauder’s fixed point theorem can

be used to guarantee the existence of weak solution un ∈ H1
0(Ω) ∩ L∞(Ω), satisfying∫

Ω

a(x, Tn(un))DunDφ+

∫
Ω

unφ =

∫
Ω

(|Tn(un)|γEn)Dφ+

∫
Ω

fnφ ∀φ ∈ H1
0(Ω).

(11)
We need the following lemma first:
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Lemma B. Suppose θ + 2γ < 2, E ∈ [L2r(Ω)]N with r ≥ m
2−2γ−θ , f ∈ Lm(Ω), with

m ≥ 2. Then: ∫
Ω

|un|m ≤ C

(∫
Ω

|E|
2m

2−2γ−θ +

∫
Ω

|E|2 +
∫
Ω

|f |m
)
.

If m = 1, for any θ > 0, γ > 1 and r ≥ 1 we have:∫
Ω

|un| ≤
∫
Ω

|f |.

Proof. If m = 1, fix k > 0 and take φ = Tk(un)
k as a test function. We have, ignoring

the first positive term:∫
Ω

un
Tk(un)

k
≤ kγ−1

∫
Ω

|E||Dun|+
∫
Ω

|f |

Taking the limit k → 0 and using Fatou’s lemma:∫
Ω

|un| ≤
∫
Ω

|f |

Fix λ > 1, take φ = |1 + |un||λ−2(1 + |un|)sgn(un) as a test function to obtain:

α(λ−1)

∫
Ω

(1+|un|)λ−2−θ|Dun|2+
∫
Ω

|un|λ ≤ C

∫
Ω

(1+|un|)λ−2+γ |E||Dun|+
∫
Ω

|f ||un|λ−1

After using Young’s inequality, that becomes:∫
Ω

|un|λ ≤ C

∫
Ω

(1 + |un|)2[(λ−2+γ)−λ−2−θ
2 ]|E|2 +

∫
Ω

|f ||un|λ−1

Simplifying:∫
Ω

|un|λ ≤ 1

4

∫
Ω

|un|2r
′[(λ−2+γ)−λ−2−θ

2 ]+C

(∫
Ω

|E|2r +
∫
Ω

|E|2 +
∫
Ω

|f |m
)
+
1

4

∫
Ω

|un|m
′(λ−1)

Choosing λ = m and r′ = m
m−2+2γ+θ we obtain:

1

2

∫
Ω

|un|m ≤ C

(∫
Ω

|E|
2m

2−2γ−θ +

∫
Ω

|E|2 +
∫
Ω

|f |m
)

(12)
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3.1 m, r sufficiently large

As we shall see in the next theorem, the presence of a low order term increase the
regularity of solutions. This fact was already noticed in some cases when θ = 0, γ > 1,
see [6]. Here we extend this analysis to the case θ > 1.

Theorem 3. Suppose θ > 1 and θ + 2γ < 2, f ∈ Lm(Ω) with m ≥ max{2, θN
2 },

E ∈ [Lp(Ω)]N such that p > Nm
m−2γ−θ . Then the Dirichlet problem (L) has bounded

weak solution u ∈ H1
0(Ω) ∩ L∞(Ω).

Proof. Set Ak = {(1 + |un|)θ−1 > (1 + k)θ−1} = {|un| > k} and take

φ =
1

θ − 1
G(1+k)θ−1((1 + |un|)θ−1)sgn(un) =: Gk,nsgn(un)

as a test function in (11). We have:

α

∫
Ak

|Dun|2

(1 + |un|)2
+

∫
Ak

|un|Gk,n ≤ C

∫
Ak

(1 + |un|)γ+θ−2|E||Dun|+
∫
Ak

|f ||Gk,n|

Notice that by Young’s inequality:∫
Ak

|f |Gk,n ≤ Cϵ

∫
Ak

|f |θ + ϵ

θ − 1

∫
Ak

[(1 + |un|)θ−1 − (1 + k)θ−1][(1 + |un|)θ−1 − (1 + k)θ−1]
1

θ−1

≤ Cϵ

∫
Ak

|f |θ + ϵCθ

∫
Ak

Gk,n|un|

Taking ϵ = 1
Cθ

and combining with the equations above we get:

α

∫
Ak

|Dun|2

(1 + |un|)2
≤ C

∫
Ak

(1 + |un|)γ+θ−2|E||Dun|+ Cϵ

∫
Ak

|f |θ.

Using Young’s inequality again:

α

2

∫
Ak

|Dun|2

(1 + |un|)2
≤ 1

2α

∫
Ak

(1 + |un|)2(γ+θ−1)|E|2 + Cϵ

∫
Ak

|f |θ,

Using lemma B with r such that 2r′(γ + θ − 1) = m, i.e. r = m
m−2(γ+θ−1) , we obtain:

∫
Ak

∣∣∣∣D log

(
1 + |un|
1 + k

)∣∣∣∣2 ≤ C

(∫
Ak

|E|2r
) 1

r

+ C∥f∥θ
m
|Ak|

m−θ
m

≤ C

(
∥E∥2

p
|Ak|

p−2r
p + ∥f∥θ

m
|Ak|

m−θ
m

)
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Finally, Sobolev’s inequality give us:

(∫
Ak

| log(1 + |un|)− log(1 + k)|2
∗
) 2

2∗

≤ C

(
∥E∥2

p
|Ak|

p−2r
p + ∥f∥θ

m
|Ak|

m−θ
m

)
We conclude that:∫

Ak

| log(1 + |un|)− log(1 + k)|2
∗
≤ C

(
∥E∥2

p
|Ak|

2∗(p−2r)
2p + ∥f∥θ

m
|Ak|

2∗(m−θ)
2m

)

Since m > θN
2 implies 2∗(m−θ)

2m , 2∗(p−2r)
2p > 1, lemma A gives ∥ log(1 + |un|)∥∞ ≤ C

and consequently:
∥un∥∞ ≤ C

It suffices now to choose any n > C such that Tn(un) = un, for this particular n, un

is a bounded weak solution of problem (L).

3.2 2 ≤ m < θ + 2

In our last result we slightly weaken the summability of the source f(x), the cost of this
is the existence of a distributional solution only, instead of a bounded weak solution.

Theorem 4. Suppose θ+2γ < 2, f ∈ Lm(Ω) with 2 ≤ m < θ+2, and E ∈ [L2r(Ω)]N

with r ≥ max
(

m
2−2γ−θ ,

m
6+θ−2m−2γ

)
. Then the Dirichlet problem (L) has distributional

solution u ∈ W
1, 2m

θ+2

0 ∩ Lm(Ω).

Proof. Consider φ = [(1 + |un|)m−1 − 1]sgn(un) as a test function. We have∫
Ω

|Dun|2

(1 + |un|)θ−m+2
≤ C

(∫
Ω

(1 + |un|)γ+m−2|E||Dun|+
∫
Ω

|f ||un|m−1

)
Using Young’s inequality, the fact that m < θ + 2, and lemma B again, we have:∫

Ω

|Dun|2

(1 + |un|)θ−m+2
≤ C

(∫
Ω

(1 + |un|)2[γ+m−2+ θ−m+2
2 ]|E|2 +

∫
Ω

|f ||un|m−1

)
≤ C

(
∥E∥2

2r
+ ∥f∥m

m

)
We conclude that: ∫

Ω

|Dun|2

(1 + |un|)θ−m+2
≤ C

For any q < 2, by Holder’s inequality using 2
q and ( 2q )

′:

∫
Ω

|Dun|q =

∫
Ω

(1 + |un|)
q(θ−m+2)

2

(1 + |un|)
q(θ−m+2)

2

|Dun|q ≤ C

(∫
Ω

(1 + |un|)
q(θ−m+2)

2−q

) 2−q
2
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Set q = 2m
θ+2 then q(θ−m+2)

2−q = m and we conclude that∫
Ω

|Dun|
2m
θ+2 ≤ C.

Therefore, un ⇀ u up to a subsequence and as before, u is a distributional solution.

4 Concluding remarks and open questions

Notice that we have assumed N ≥ 3 in this manuscript due to some estimates failing
when N = 2. It would be interesting to see if the arguments presented here can be
adapted to include similar results in the plane as well. Hence it’s reasonable to ask
the following question:

What are the equivalent results of the ones presented here in 2 dimensions?

In this work the assumption γ > 0 was heavily used, so it would be interesting to
see the equivalent results, if any, in the case γ < 0. Notice in this case the nonlinearity
would compete with the degeneracy but this time also being a singularity so it’s pos-
sible that no bounded solutions exists and if they do it’s possible that some smallness
condition will be required contrary to the case described here in theorem 1. We ask
the following:

Is it still possible to obtain finite energy solutions if γ < 0 without smallness
condition on the source or vector field E?

We can increase the level of difficulty of the Dirichlet problem (L) if instead of
adding u(x), we add g(u) for some real valued function g(s) with reasonable growth.
It would be interesting to see if one can obtain Ambrosetti–Prodi type results in this
case. More precisely, consider the problem:{

−div(a(x, u)Du) + g(u) = −div (|u|γE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(13)

Is it possible to find a function g(s) Lipschitz with g(0) = 0 such that for any given

source f(x) only one of the following three options are possible: the above system has
no solution, one solution, or two solutions.
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