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The Hodge conjecture is major open problem in Complex Al-
gebraic Geometry that has been puzzling mathematician for
many decades. The modern statement is the following: Let X
be smooth complex projective variety, then the (rational) cycle
class map is surjective:

cl⊗Q : CHp(X )⊗Q→ Hp,p ∩ H2p(X ,Q)

where cl⊗Q(
∑

aiXi) =
∑

ai [Xi ], ai ∈ Q and [Xi ] is the class of
the subvariety Xi .



The initial statement, made by Hodge (during the ICM 1950),
was that the conjecture above should hold integrally. But this
was disproved years later by Grothendieck using a product of
Elliptic curves. The only case of the conjecture which holds in
complete generality (and over the integers) is when p = 1, that
is to say the integral class map is surjective:

cl : CHp(X )→ Hp,p ∩ H2p(X ,Z)

This is the Lefschetz’s theorem on (1, 1)-classes, which was
proved by Solomon Lefschetz using Poincare’s theory of Normal
functions. Roughly speaking, a primitive cohomology class is
the class of a normal function and since the Abel-Jacobi map is
surjective in this case, we get that every normal function comes
from a divisor.



The modern proof of his theorem is just take the cohomology
of the short exact sequence of sheaves:

0→ Z→ O exp−−→ O× → 0

and notice that CH1(X ) ∼= CL(X ) ∼= Pic(X ) = H1(X ,O×) and
H2(X ,O) ∼= H0,2(X ).

Special cases of the conjecture have emerged during the years
but all of them were specific for certain classes of varieties. For
example, Abelian varieties of prime dimension, unirational and
uniruled fourfolds, hypersurfaces of degree less than 6, and some
others.



Using the hard Lefschetz theorem, Lefschetz hyperplane theo-
rem, Lefschetz decomposition and some Hilbert scheme argu-
ments, we can reduce the Hodge conjecture to the case of an
even dimensional (> 2) variety and primitive middle cohomology
classes.

Shioda gave an interesting characterization of the Hodge con-
jecture for Fermat varieties, which we now review.



Let X n
m ∈ Pn+1 denote the Fermat variety of dimension n and

degree m, i.e. the solution to the equation:

xm0 + xm1 + . . . + xmn+1 = 0

and µm the group of m-th roots of unity. Let G n
m be quotient of

the group

n+2︷ ︸︸ ︷
µm × . . .× µm by the subgroup of diagonal elements.

The group G n
m acts naturally on X n

m by coordinatewise mul-
tiplication, moreover, the character group Ĝ n

m of G n
m can be

identified with the group:



Ĝ n
m = {(a0, . . . , an+1)|ai ∈ Zm, a0 + . . . + an+1 = 0}

via (ζ0, . . . , ζn+1) 7→ ζa00 . . . ζan+1

n+1 , where (ζ0, . . . , ζn+1) ∈ G n
m.

By the arguments above, in order to prove the Hodge conjec-
ture, it’s enough to prove it for primitive classes, therefore in
this talk we will restrict our attention to primitive cohomology.

The action of G n
m extends to the primitive cohomology and

makes H i
prim(X n

m,Q) and H i
prim(X n

m,C) a G n
m-module. For α ∈

Ĝ n
m, we set:

V (α) = {ξ ∈ Hn
prim(X n

m,C)|g ∗(ξ) = α(g)ξ for all g ∈ G n
m}



The characterization of the cohomology of Fermat varieties as a
direct sum of eigenspaces was first described by Katz and Ogus
using the representation theory of finite groups. Let

Un
m := {α = (a0, . . . , an+1) ∈ Ĝ n

m|ai 6= 0 for all i}

For α ∈ Un
m we set |α| =

∑
i
<ai>
m

, where < ai > is the rep-
resentative of ai ∈ Zm between 1 and m − 1. If n = 2p, we
set

Bn
m := {α ∈ Un

m||tα| = p + 1 for all t ∈ Z∗m}

We have:



Theorem (Katz,Ogus) Let Hdgp(X n
m) := Hp,p ∩ H2p

prim(X ,Q)
be the group of primitive Hodge cycles. Then:

(a) dimV (α) = 0 or 1, and V (α) 6= 0 ⇐⇒ α ∈ Un
m

(b) Hdgp(X n
m) =

⊕
α∈Bn

m
V (α)

Now let C (X n
m) denote the subspace of Hdgp(X n

m) which are
classes of algebraic cycles. Then C (X n

m) is a G n
m-submodule

and by the theorem above there is a subset Cn
m ⊂ Bn

m such
that:

C (X n
m) =

⊕
α∈Cn

m

V (α)

the Hodge conjecture can then be stated as follows:

Conjecture (Hodge Conjecture) For all n,m we have Cn
m =

Bn
m.



By the discussion in the previous section, this is true for n ≤ 2
and all m. The idea to prove this equality for Fermat varieties
it to use the fact that X n

m ‘contains’ disjoint unions of X k
m with

k < n, we then blow that up to find a relation between the
cohomologies and to inductively construct algebraic cycles in
X n
m. More precisely, we have the following result due to Shioda:

Theorem (Shioda) Let n = r + s with r , s ≥ 1. Then there is
an isomorphism

[H r
prim(X r

m,C)⊗ H s
prim(X s

m,C)]µm ⊕ H r−1
prim(X r−1

m ,C)⊗ H s−1
prim(X s−1

m ,C)

Hn
prim(X n

m,C)

f

with the following properties:



a) f is G n
m-equivariant

b) f is morphism of Hodge structures of type (0,0) on the
first summand and of type (1, 1) on the second.

c) If n = 2p then f preserves algebraic cycles, moreover if

Z1 ⊗ Z2 ∈ H r−1
prim(X r−1

m ,C)⊗ H s−1
prim(X s−1

m ,C)

then f (Z1 ⊗ Z2) = mZ1 ∧ Z2, where Z1 ∧ Z2 is the
algebraic cycle obtained by joining Z1 and Z2 by lines on
X n
m, when Z1,Z2 are viewed as cycles in X n

m.

Shioda proved the following:

Theorem (Shioda) If m is coprime to 6 then Hdg 1(X 2
m) is gen-

erated by lines.



A few years later his student proved:

Theorem (Aoki) If m is coprime to 6 then Hdg 1(X 1
m × X 1

m) is
generated by lines.

Now taking r = s = 2 in the theorem and using the two theo-
rems above we immediately get:

Theorem If m is coprime to 6 then Hdg 2(X 4
m) is generated by

2-planes.

As a corollary we have:

Theorem If m is coprime to 6 then the Hodge conjecture is
true for X 4

m.



In light of Shioda’s theorem, we introduce the following nota-
tion:
Let β = (b0, . . . , br+1), γ = (c0, . . . , cs+1), we set:

Ur ,s
m = {(β, γ) ∈ Ur

m × Us
m |br+1 + cs+1 = 0}

For (β, γ) ∈ Ur ,s
m we define:

β#γ = (b0, . . . , br , c0, . . . , cs) ∈ Ur+s
m

and for β′ = (b0, . . . , br ) ∈ Ur−1
m and γ′ = (c0, . . . , cs) ∈ Us−1

m ,
we set:

β′ ∗ γ′ = (b0, . . . , br , c0, . . . , cs) ∈ Ur+s
m



As a corollary of Shioda’s theorem we have:

Corollary Suppose n = 2p = r + s, where r , s ≥ 1.

a) If r , s are odd and (β′, γ′) ∈ Cr−1
m × Cs−1

m then
β′ ∗ γ′ ∈ Cn

m

b) If r , s are even and (β, γ) ∈ (Cr
m × Cs

m) ∩ Ur ,s
m then

β#γ ∈ Cn
m

Therefore, the Hodge conjecture can be proven for the Fermat
X n
m if the following conditions are true for every α ∈ Bn

m:

(P1) α ∼ β′ ∗ γ′ for some (β′, γ′) ∈ Br−1
m ×Bs−1

m , (r , s odd).

(P2) α ∼ β#γ for some (β, γ) ∈ (Br
m ×Bs

m) ∩ Ur ,s
m , (r,s even

and positive).

where ∼ means equality up to permutation between factors.



In order to make these conditions more explicit, we introduce the
additive semi-group Mm of non-negative solutions (x1, . . . , xm−1; y),
with y > 0, of the following system of linear equations:

m−1∑
i=1

< ti > xi = my for all t ∈ Z∗m

Also, define Mm(y) as those solutions where y is fixed. Note
that by Gordan’s lemma, Mm is finitely generated.

Definition An element a ∈ Mm is called decomposable if
a = c + d for some c , d ∈ Mm, otherwise it’s called inde-
composable. An element is called quasi-decomposable if
a + b = c + d for some a ∈ Mm(1) and c , d ∈ Mm with
c , d 6= a.



With this notation we can identify elements of Bn
m with ele-

ments of Mm using the map:

α = (a0, . . . , an+1) ∈ Bn
m

{α} = (x1(α), . . . , xm−1(α), n
2

+ 1) ∈ Mm(n
2

+ 1)

{·}

where xk(α) is the number os i’s such that < ai >= k .

Note that α satisfies (P1) above if and only if {α} is decom-
posable. If α satisfies (P2) then {α} is quasi-decomposable.
Conversely, if the latter is true then α satisfies (P1) or (P2).
So it makes sense to introduce the following conditions:



(Pn
m) Every indecomposable elemets of Mm(y) with

3 ≤ y ≤ n
2

+ 1, if any, is quasi-decomposable.

(Pm) Every indecomposable elemets of Mm(y) with y ≥ 3 is
quasi-decomposable.

By the results above we conclude:

Proposition If condition (Pm) is satisfied, then the Hodge con-
jecture is true for X n

m for all n. If (Pn
m) is satisfied then the

Hodge conjecture is true for X n
m.

This theorem gives us a combinatorial approach to the Hodge
conjecture, namely, one can check condition (Pn

m) or (Pm) and
deduce from it the Hodge conjecture.



For m ≤ 20, condition (Pm) can easily be verified by hand.
Also, for m prime or m = 4, Mm is generated by Mm(1). In
summary:

Theorem (Shioda, Ran) If m ≤ 20 or m prime, then the Hodge
conjecture is true for X n

m for every n.

For m > 20, checking condition (Pm) by hand is almost im-
possible for m not prime. Using computer one can see that
for m = p2, the number of indecomposables elements are very
small when compared to other values of m. On the other hand,
some of those cases do not satisfy (Pm), say m = 25 for exam-
ple. That is not to say that Hodge conjecture is false, on the
contrary, N. Aoki explicitly constructed algebraic cycles repre-
senting each V (α).

Theorem (Aoki) If m = p2, then the Hodge conjecture is true
for X n

m for every n.



Using computer we were able to verify condition (Pm) for m =
21 and m = 27.

Proposition If m = 21 or m = 27, then the Hodge conjecture
is true for X n

m for every n.

Since 21 is a product of distinct primes, one might think that
condition (Pm) should hold for a product of distinct primes.
That is not the case:

Proposition Condition (P4
33) is false.

This proposition confirms that starting at n = 4, there are cycles
not coming from the induced structure. Therefore, we can not
prove the Hodge conjecture only using this approach. One thing
that can be done is to find explicitly the algebraic cycles whose
class project non trivially to V (α) for each α ∈ Bn

m.



In the particular case where m = 3d and 3 - d , as above, we
have a candidate. Consider the following elementary symmetric
polynomials in x= (x0, . . . , x5):

p1(x) := x0 + x1 + x2 + x3 + x4 + x5

p2(x) := x0x1 + x0x2 + . . . x4x5

p3(x) := x0x1x2 + . . . x3x4x5

(1)

Recall the Newton identity:

x30 +x31 +x32 +x33 +x34 +x35 = p1(x)3−3p1(x)p2(x)+3p3(x)3 (2)



Set xd = (xd0 , . . . , x
d
5 ), then:

xm0 +xm1 +xm2 +xm3 +xm4 +xm5 = p1(xd)3−3p1(xd)p2(xd)+3p3(xd)3

(3)
Let W denotes the following variety in P5:

p1(xd) = p2(xd) = p3(xd) = 0 (4)

By construction, W ⊂ X 4
m is a subvariety of codimension 2, so

[W ] ∈ Hdg 2(X 4
m).

Question Can [W ] project non trivially in V (α) for every α ∈
B4

m?

If the answer is yes, then we would have a positive answer to
the Hodge conjecture even if condition (P3d) is false.



We know by Schur’s lemma that the number of indecomposable
elements is finite. Let Im be set of indecomposable elements of
Mm. Define φ : Z+ → Z+ by the rule

φ(m) = {max y | (x1, . . . xm−1, y) ∈ Im} (5)

We have the following:

Proposition If the Hodge conjecture is true for X n
m, for all

n ≤ 2(φ(m)− 1), then it’s true for X n
m and any n.

Proof. The Hodge classes in X n
m are parametrized by Bn

m, which
can be viewed inside Mm as elements of length n

2
+ 1. Since

the indecomposables generate Mm, it is enough that those be
classes of algebraic cycles. But that is the case if the Hodge
conjecture is true when n

2
+1 ≤ φ(m), by definition of φ(m).



Therefore, for Fermat varieties of degree m, we don’t need to
check the Hodge conjecture in every dimension. It’s enough to
prove the result for dimension up to 2(φ(m)− 1).

A natural question that arises is then what is the explicit ex-
pression of the function φ(m). For m prime or m = 4, we know
already that φ(m) = 1. Also, by the work of Aoki, we know
that for p > 2 prime φ(p2) = p+1

2
. Here’s a table with the a

few values of φ(m):



m φ(m)
20 5
21 3
22 7
23 1
24 9
25 3

m φ(m)
26 7
27 5
28 7
29 1
30 9
31 1

m φ(m)
32 9
33 5
34 5
35 8
36 13
37 1

m φ(m)
38 11
39 5
40 17
41 1
42 11
43 1

Based on the values above and the ones already computed, we
believe the following is true:

Conjecture For p > 2 prime, we have φ(pk) = pk−1+1
2

, and
φ(2l) = 2l−2 + 1 for l > 2.



Computing φ(m) for m < 48 gives the following:

5 10 15 20 25 30 35 40 45

1

3

5

7

9

13

17

y = m+3
3

m

φ
(m

)



Question It seems that φ(m) ≤ f (m) for some linear function
f . Can f be described explicitly?

For m ≥ 48, computations become more and more time con-
suming, even for the computer, and specially if m has a lot
of prime powers in its prime decomposition. But we hope to
use the results obtained here to understand the structure of
the semi-group Mm and consequently, prove more cases of the
Hodge conjecture.



Thank you!


