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Abstract. The Hodge conjecture is a major open problem in complex alge-

braic geometry. In this survey, we discuss the main cases where the conjecture

is known and also explain an approach by Griffiths-Green to solve the problem.

In his 1950 ICM address [9], Hodge proposed several questions concerning the
topology and geometry of algebraic varieties. The majority of those problems were
solved in the following years but one survived to this day. What now is known as
the Hodge conjecture, remains one of the more interesting, and deepest unsolved
problem in complex algebraic geometry.

Hodge initially stated his question using integral cohomology classes. As stated,
the conjecture would then be false. Atiyah and Hirzebruch [2] gave the first proof
of this fact in the sixties. The rational coefficients version of his conjecture is what
we know today as the Hodge conjecture.

The conjecture itself is a generalization of a result of Lefschetz [17] proved years
earlier, even before Hodge formulated his problem. The Lefschetz theorem on (1, 1)-
classes is the Hodge conjecture with integral coefficients in codimension one. The
method of the proof employed by Lefschetz was to use a tool developed by Poincaré,
called normal function. In modern algebraic geometry language, a more simple and
elegant proof can be given, see Section 1.

Unfortunately, Lefschetz’s proof can’t be generalized to higher dimensions since
a crucial condition used in his proof, Jacobi inversion, can fail in codimension
greater than one [29]. Despite this, a generalization of his technique was proposed
by Phillip Griffiths & Mark Green in the early 2000s, which uses normal functions
as well, albeit differently, more on this in Section 3.

Over the years, many special cases of the conjecture were proven, most notably,
many cases involving Abelian varieties. In most of the cases, the idea is to use an
additional structure of the projective variety. For example, the abelian condition,
group action or symmetry of the defining equations, varieties with many lines on
it, cohomology ring generated by divisors, and so on.

The idea of this manuscript is to describe the main known cases of the Hodge
conjecture and discuss a possible approach to the proof. The list is not meant
to be a comprehensive list of every single case proved so far, but a place where
the main cases can be found. The importance given to the examples is from the
author’s personal taste and it’s possible that relevant examples were left out of this
text. Some topics related to the conjecture are not discussed here, like the General
Hodge conjecture, the Tate conjecture, absolute Hodge classes, variational Hodge
conjecture, and the Standard conjectures.
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In Section 1 we introduce the notation of the paper, state the Hodge conjecture
and discuss Lefschetz’s theorem on (1, 1)-classes. Section 2 reviews all known rel-
evant cases of the conjecture. Section 3 describes the Griffiths-Green program to
solve the Hodge conjecture using singularities of normal functions.

Acknowledgements. I thank Prof. Matt Kerr and Prof. Phillip Griffiths for
many discussions regarding the Hodge conjecture and related topics.

1. The statement of the problem

One of the motivations behind the Hodge conjecture was the following theorem
by Lefschetz.

Theorem 1.1. (Lefschetz’s theorem on (1, 1)-classes) Let X be a compact Kahler
manifold, then the cycle class map

c1 : H1(X,O×)→ H1,1(X) ∩H2(X,Z)

is surjective.

Proof. Consider the exponential exact sequence over X:

0→ Z i−→ O exp−−→ O× → 0

where i is the inclusion and exp is the exponential map exp(f) = e2πif . Taking
cohomology we get:

...→ H1(X,O×)
c1−→ H2(X,Z)

i∗−→ H2(X,O)→ ...

Note that by definition of the Chern Class, we have c1(L) ∈ H1,1(X) for any
complex line bundle L. On the other hand, ker i∗ is the image of c1 and H2(X,O) ∼=
H0,2(X), hence i∗ = 0 on H1,1(X) ∩H2(X,Z) and c1 is surjective. �

Remark 1.2. Note that if X is smooth projective then Pic(X) ∼= CH1(X) and
H1(X,O×) ∼= Pic(X).

Lefschetz proved his theorem only for surfaces and at the time of his proof, the
theory of sheaf cohomology was not developed yet, so his approach to the problem
was rather different from the one above. His idea was to use a tool developed by
Poincaré called normal function. To describe normal functions we need a few
preliminaries first. Let S be a smooth complex projective surface. A Lefschetz’s
pencil on S is a family of hyperplane sections {Ct}t∈P1 such that for finitely many
t ∈ P1, Ct has a unique singularity and it is a node. The existence of Lefschetz’s
pencil is not automatic from the definition, a proof can be found in [33, 14, 7].

After possibly blowing up the base locus, the Lefschetz’s pencil gives a morphism
π : S̃ → P1, where the fiber Ct has a node for t ∈ {t1, . . . , tm}. The (extended)
intermediate Jacobian bundle Je is defined by

(1.1) 0→ R1π∗Z→ R1π∗OS̃ → Je → 0

Poincaré then defined a normal function as a section of Je.
An algebraic cycle Z ∈ CH1(S) defines a normal function νZ as follows. Let

Zt := Z · Ct ∈ Div◦(Ct), then we define νZ(t) = AJ(Zt), where AJ is the Abel-
Jacobi map.
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Taking cohomology of 1.1 we get
(1.2)

0→ Pic◦(S)→ Γ(P1,Je)
[.]−→ H1(P1, R1π∗Z) ∼= H2(S,Z)prim → H1(P1, R1π∗OS̃)

Lefschetz analyzed the map [.] in 1.2 and proved that ζ = [ν] for some normal
function ν, if and only if ζ ∈ H1,1(X)∩H2(S,Z)prim. He also proved that [νZ ] = [Z]
for any cycle Z.

Poincare had proved earlier that under the above hypothesis, Jacobi inversion
holds, which is the statement in this case that ν = νZ for some algebraic cycle Z,
which completes Lefschetz’s original proof of his theorem.

Unfortunately, Jacobi inversion does not hold in general, so Lefschetz’s approach
can’t be generalized, at least not using Jacobi inversion to generalize Poincaré’s
result. In the early 2000’s, Griffiths and Green [12] gave an approach to prove the
Hodge conjecture inductively, using normal functions. We’ll discuss their program
in Section 3.

The modern statement of the Hodge conjecture is the following:

Conjecture 1. Let X be smooth complex projective variety of dimension n and p
a number with p ≤ n. The (rational) cycle class map

cl⊗Q : CHp(X)⊗Q→ Hp,p(X) ∩H2p(X,Q)

is surjective.

In our notation, cl⊗Q(
∑
aiXi) =

∑
ai[Xi], ai ∈ Q and [Xi] is the class of the

subvariety Xi.

Remark 1.3. Note that Lefschetz’s theorem is true over Z, but in higher codimen-
sion, the ⊗Q is necessary. Atiyah & Hirzebruch [2] constructed a counter-example
for torsion Hodge classes.

Remark 1.4. The fact that X is not only compact Kahler but is projective is also
necessary. Zucker [34] gave a counter-example in case of a complex torus that
wasn’t an algebraic variety.

Remark 1.5. Hodge also stated another conjecture on algebraic cycles. Known to-
day as the Hodge General Conjecture, it is also about cohomology classes and
algebraic subvarieties but much more general than the conjecture we are discussing
here, in particular, it implies conjecture 1. As stated by Hodge, his general con-
jecture was false, Grothendieck gave a counter-example and proposed an amended
version of it in [13].

2. Known cases of the conjecture

Unless otherwise stated, X will be a smooth complex projective vari-
ety. All results stated here are well known and most of them were proved many
decades ago. See also [29, 18].

Recall the following results of Lefschetz:

Theorem 2.1. (Lefschetz’s theorem on hyperplane sections) Let i : Y → X be a
inclusion of a hyperplane section in X. Then the natural map

i∗ : Hk(X,Z)→ Hk(Y,Z)

is an isomorphism for k < n− 1 and is injective if k = n− 1.
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Theorem 2.2. (Hard Lefschetz) Let X be a compact Kahler manifold with Kahler
class [ω] ∈ H1,1(X) ∩ H2(X,Z). The map on forms L(x) = x ∧ [ω] descend to
cohomology. For k ≤ n we have an isomorphism

Ln−k : Hk(X,Q)
∼−→ H2n−k(X,Q)

which is a morphism of Hodge structures of type (1, 1).

Remark 2.3. A class α ∈ Hk(X,Q) is primitive if L(α) = 0.

Since a morphism of Hodge structures preserves algebraic cycles we deduce

Corollary 2.4. For 2p ≤ n, if the Hodge conjecture is true in codimension p, then
it’s also true in codimension n− p.

By theorem 1.1, we get

Corollary 2.5. The Hodge conjecture is true in codimension n− 1.

Using the above we arrive at

Theorem 2.6. The Hodge conjecture is true for all X with dimension less than or
equal to 3.

Proof. In dimension 1, we have H0(X,Q) ∼= [X], H2(X,Q) ∼= [pt], where ∼= means
generated by. If X has dimension 2 then H0(X,Q) ∼= [X], H4(X,Q) ∼= [pt]
and H1,1(X) ∩ H2(X,Q) is algebraic by theorem 1.1. In dimension 3, we have
H0(X,Q) ∼= [X], H1,1(X) ∩H2(X,Q) algebraic, and the Hodge classes in H4, H6

are algebraic by the above corollary. �

Proposition 2.7. The Hodge conjecture is true if X is a flag variety, in particular,
it’s true for all Grassmanians G(a, b).

Proof. The integral cohomology ring of a flag variety is generated by Schubert
cycles, and the latter are algebraic by construction. �

Hypersurfaces of degree d in Pn+1. Note that any hypersurface can be seen as
a hyperplane section of Pn+1, hence we can apply theorem 2.1. Since the Hodge
conjecture is trivially true for projective spaces, the only hodge classes that are left
to check are the ones in Hn,n ∩H2n(X,Q).

Theorem 2.8. The Hodge conjecture is true for hypersurfaces of degree 1 and 2,
linear varieties and quadrics respectively.

Proof. Recall that a variety has degree 1 if and only if it’s linear, hence its coho-
mology is the same as Pn. In the degree 2 case, we have that the cohomology ring
has a cellular decomposition and is again generated by Schubert cycles [10], hence
Hodge classes are algebraic in this setting as well. �

Remark 2.9. This proposition summarizes all known cases of the Hodge conjecture
for hypersurfaces based on the degree only, which don’t depend on the dimension
n.

We now discuss the case of fourfolds hypersurfaces.

Lemma 2.10. Let p : P (E) → X be a projective bundle. If the Hodge conjecture
is true for X then it’s also true for P (E). In particular, it’s also true for Flag
Bundles.
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Proof. The cohomology ring H∗(P (E)) is an algebra over H∗(X) generated by
c1(OP (E)(1)), with coefficients in the Chern classes of E. By construction, Chern
classes come from algebraic cycles and the result follows. �

Lemma 2.11. Let f : X → Y be a morphism of degree d > 0 between smooth
complex algebraic varieties. If the Hodge conjecture holds for X then it holds for
Y .

Proof. Let a ∈ Hp,p(Y,Q) be a Hodge class, then the pullback f∗(a) is a Hodge
class in X, so if the Hodge conjecture is true, f∗(a) = [Z] for some algebraic cycle
Z. Then da = f∗f

∗(a) = f∗[Z], so a = 1
df∗[Z]. �

Theorem 2.12. (Zucker [34]) The Hodge conjecture is true for cubic fourfolds.

Proof. The idea of the Proof is to use the relative Fano variety of lines, which in
this case is a threefold, and use proposition 2.6 and the lemmas above.

Let {Xt}t∈P1 be a Lefschetz pencil. A general member of this pencil is a smooth
cubic threefold. Cubic threefolds were extensively studied in [11]. Consider the
relative Fano variety of lines

F := {(t, l) ∈ P1 ×G(2, 5) | l ⊆ Xt}
and the tautological projective line bundle over it

E := {(x, t, l) ∈ X × F | x ⊆ l ⊆ Xt}
so that we have natural projections map π : E → F and µ : E → X. After blowing
up the base locus, if necessary, we can assume F smooth. By [11], µ has degree 6
and we also have dimF = 3 and E a projective bundle. The result then follows
from the two lemmas above. �

Remark 2.13. Zucker also gave another, more technical, proof using normal func-
tions. The disadvantage of the proof above, according to him, is that it can’t be
generalized, since it used the fact that the dimension of F is 3 and for X of higher
degree or dimension, the dimension of F should be higher.

Remark 2.14. That is not to say that his proof using normal functions can be gen-
eralized either, as we noted before, Jacobi inversion can fail in codimension greater
than one [27]. So a different method must be used to arrive at a generalization of
the Poincaré’s existence theorem.

We now discuss the unirational case, but first a lemma (see [18, chapter 13] for
a proof).

Lemma 2.15. Let D ⊆ X be a smooth irreducible subvariety of codimension r ≥ 2
and BD(X) the blow-up of X along D with exceptional divisor E and morphism
f : BD(X)→ X. Then

Hk(BD(X),Q) = Hk(X,Q)⊕Hk−2(D,Q)⊕ . . .⊕Hk−2r+2(D,Q)

Notice that in particular if the Hodge conjecture holds for X and D then it holds
for BD(X), hence the following is immediate:

Lemma 2.16. If D ⊂ X is smooth irreducible subvariety of codimension r ≥ 2
and dimD ≤ 3, then if the Hodge conjecture holds for X, it also holds for BD(X).

We are ready to prove the next case.
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Theorem 2.17. (Murre [21]) The Hodge conjecture is true for unirational four-
folds.

Proof. By hypothesis, there is a dominant rational map f : P4 → X. By Hironaka’s
theorem, we can find Y obtained from P4 after a sequence of blow-ups of surfaces,
lines, and points, such that there is a proper surjective morphism of finite degree
m : Y → X. The result follows from the previous lemma and lemma 2.11. �

Definition 2.18. We say X is uniruled if X can be covered by lines. Equivalently,
there’s a dominant rational map Y × P1 → X, where dimY = dimX − 1.

Slightly adjusting the argument from the previous theorem we get

Theorem 2.19. (Conte-Murre [5]) The Hodge conjecture is true for uniruled four-
folds.

Proof. By hypothesis, there is a dominant rational map Y ×P1 → X where dimY =
3. Note that the Hodge conjecture is true for Y × P1. Indeed, Kunneth’s formula
respects Hodge types. Now we repeat the argument of theorem 2.17. By Hironaka’s
theorem, we can find W smooth and obtained by blowups, and proper surjective
morphism of finite degree m : W → X. The result follows from the lemma 2.16
and lemma 2.11. �

Corollary 2.20. The Hodge conjecture is true for quartic and quintic fourfolds.

Proof. Quartic and quintic fourfolds are uniruled [5]. �

After more than 40 years, a complete proof for fourfolds of degree six and beyond
have not been found, except for particular cases. In fact, some fourfolds are even
candidates for counter-example to the Hodge conjecture, as we shall see soon.

We now discuss complete intersection fourfolds. The method of proof is very
different from the ones presented so far. Instead of using lines or blowups, the idea
consists of using a theorem by Bloch and Srinivas, which concerns the class of the
diagonal in X ×X.

Theorem 2.21. (Bloch-Srinivas [3]) Let Y be a smooth complex projective variety
of dimension n such that CH0(Y ) is supported on a closed algebraic subset W ⊆ Y .
Then if ∆ ∈ CHn(Y × Y ) is the class of the diagonal, there is a nonzero integer
N , Z1, Z2 ∈ CHn(Y × Y ), and a divisor D such that:

N∆ = Z1 + Z2

and Supp Z1 = D × Y, D ( Y, Supp Z2 = Y ×W

An important corollary from the theorem above is the following:

Corollary 2.22. (Bloch-Srinivas [3]) Let X be a smooth complex projective variety
such that CH0(X) is supported on a closed algebraic subset X ′ ⊆ X with dimX ′ ≤
3. Then the Hodge conjecture is true for (2, 2)-classes on X.

Proof. By the theorem above, there exists a divisor D, an integer N , and cycles
Z1, Z2 such that, after taking cohomology, we have:

N [∆] = [Z1] + [Z2] in H2n(X ×X,Z)

Let k : D̃ → X, j : X̃ ′ → X be the inclusion of the desingularization of D and
X ′, respectively. Each Kunneth components of H2n(X × X,Z) can be seen as a
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morphism of Hodge structures, in particular taking the components of type (4, 2n−
4) we have:

N [∆]∗ = [Z1]∗ + [Z2]∗ : H4(X,Z)→ H4(X,Z)

Now let Z ′1 ⊂ D̃ ×X be a codimension n cycle such that

(k, Id)∗(Z
′
1) = Z1

Similarly, let Z ′2 ⊂ X × X̃ ′ be such that

(Id, j)∗(Z
′
2) = Z2

then it follows that for any α ∈ H4(X,Z) we have

[Z1]∗(α) = k∗([Z
′
1]∗(α))

and

[Z2]∗(α) = [Z ′2]∗(j∗(α))

If α ∈ H2,2(X) ∩H4(X,Q), then j∗(α) is in H2,2(X̃ ′) ∩H4(X̃ ′,Q) and [Z ′1]∗(α) is

in H1,1(D̃) ∩H2(D̃,Q). The relation

N [∆]∗(α) = Nα = k∗([Z
′
1]∗(α)) + [Z ′2]∗(j∗(α))

shows that α is algebraic since the Hodge conjecture is known in dimension less
than 4, see theorem 2.6. �

Now a theorem of Roitman [25] proves that if a smooth complete intersection X
has geometric genus zero then A0(X) = 0, in particular the corollary above applies.

Let H1, . . . ,Hk be hypersurfaces in Pn of degrees d1, . . . , dk respectively. If
d1 + . . . + dk ≤ n then the geometric genus of a smooth irreducible component of
H1 ∩ . . . ∩Hk is zero. Therefore, by the above we have:

Theorem 2.23. (Bloch-Srinivas [3]) The Hodge conjecture is true for the following
fourfolds:

• cubic, quartic and quintics in P5

• intersections of two quadrics, a quadric and a cubic, two cubics, or a quartic
and a quadric in P6

• intersections of two quadrics and a cubic or three quadrics in P7

• intersection of 4 quadrics in P8

Fermat varieties Xn
m. Fermat varieties of degree m and dimension n are hyper-

surfaces Xn
m in Pn+1 defined by the zeros of

xm0 + . . .+ xmn = 0

T. Shioda [28] pioneered the study of the Hodge conjecture for Fermat varieties, and
described an algorithm to prove the conjecture for all Fermat varieties, reducing
the problem to a counting problem. Unfortunately, his program fails in some cases,
and a complete proof for Fermat Varieties is still lacking to this day.

The main theorem in the context of Fermat varieties is the following fact:

Theorem 2.24. (Shioda [28]) Let n = r + s with r, s ≥ 1. Then there is an
isomorphism

f : [Hr
prim(Xr

m,C)⊗Hs
prim(Xs

m,C)]µm⊕Hr−1
prim(Xr−1

m ,C)⊗Hs−1
prim(Xs−1

m ,C) ∼−→ Hn
prim(Xn

m,C)

with the following properties:



8 GENIVAL DA SILVA JR.

a) f is morphism of Hodge structures of type (0,0) on the first summand and
of type (1, 1) on the second.

b) If n = 2p then f preserves algebraic cycles, moreover if

Z1 ⊗ Z2 ∈ Hr−1
prim(Xr−1

m ,C)⊗Hs−1
prim(Xs−1

m ,C)

then f(Z1 ⊗Z2) = mZ1 ∧Z2, where Z1 ∧Z2 is the algebraic cycle obtained
by joining Z1 and Z2 by lines on Xn

m, when Z1, Z2 are viewed as cycles in
Xn
m.

Using the above theorem and the fact that the cohomology of Fermat varieties
decomposes as a direct sum of Eigenspaces for finite group action, Shioda was able
to reduce the problem to verifying a condition on a finite number of elements of a
semi-group. His result was the following:

Theorem 2.25. (Shioda [28]) The Hodge conjeture is true for Fermat varieties
Xn
m with degree less than 21.

For Xn
m of prime degree, we actually can say more:

Theorem 2.26. (Shioda, Ran [28, 23]) If m is prime or m = 4, the cohomology
ring of Xn

m is generated by linear subspaces, thus the Hodge conjecture is true for
Xn
m.

Very recently, using Shioda’s results I was able to prove

Theorem 2.27. (da Silva [6]) If m is coprime to 6, then the Hodge conjecture
is true for all Fermat fourfolds X4

m. Also, a computer verification proves that the
conjecture is also true for Xn

21 and Xn
27.

An interesting case is the Fermat Xn
33. A simple computer verification [6] shows

that Shioda’s program fails in this case. Hence, there are Hodge cycles not coming
from the induced structure in this case, and we can’t use Shioda’s method to prove
the Hodge conjecture for all Fermat varieties. Interestingly, his program also fails
for Xn

p2 for p prime, but N. Aoki [1] proved the Hodge conjecture in this case:

Theorem 2.28. (Aoki [1]) The Hodge conjecture is true for Xn
p2 , p prime.

In this case, the cycles that do not come from the induced structure can be
explicitly constructed. Sadly, it’s unlikely his proof can be generalized in all degrees.

Shioda’s results also proved a special case of the Hodge conjecture for Abelian
varieties, namely, those of Fermat type.

Definition 2.29. An abelian variety A is said to be of Fermat type of degree m if
it is isogeneous to a product J1 × . . .× Jk of Jacobian of curves dominated by the
Fermat curve X1

m.

A simple application of the discussion above gives:

Theorem 2.30. (Shioda,[28]) If the Hodge conjecture is true for the Fermat Xn
m

regardless of n, then it’s true for any abelian variety A of Fermat type of degree m.

Proof. Indeed, by definition of Jacobian, we can find a morphism of finite degree
f : X1

m × . . . × X1
m → A. Now the Hodge conjecture is true for the product

X1
m × . . .×X1

m [28, Theorem IV]. The result then follows from lemma 2.11. �
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Remark 2.31. This proof drastically differs from the “usual” proof of the Hodge
conjecture for Abelian varieties –as we’ll see next– in the sense that the majority
of cases is proven by verifying the fact that the cohomology is generated by the
intersection of divisors. In particular, for Abelian varieties of Fermat type, the
conjecture is true even in cases where the cohomology ring is not generated by
divisors.

Abelian varieties. The case of general Abelian varieties is an interesting one, in
the sense that besides being smooth complex and projective, it’s also an Abelian
group, so techniques from group theory and representation theory are available.

In this subsection, A will always denote an Abelian variety.

Definition 2.32. Let Bp(A) be the group of codimension p Hodge cycles, Cp(A)
be the group of codimension p algebraic cyles. We set Dp(A) =

∧
p C

1(A), the
subgroup generated by divisors.

Note that by Lefschetz’s (1, 1) theorem, B1(A) = C1(A) and

Dp(A) ⊆ Cp(A) ⊆ Bp(A)

As we said above, in practically all cases of Abelian varieties the method of proof
of the Hodge conjecture is the same, namely, show that Dp(A) = Bp(A) and hence
Cp(A) = Bp(A).

Theorem 2.33. The condition Dp(A) = Bp(A) is true for the following class of
abelian varieties:

i) (Tate,Murasaki [31, 20]) En, self product of an elliptic curve.
ii) (Tankeev, Ribet [30, 24]) Simple abelian variety of prime dimension.

iii) (Hall,Kuga [8]) Generic fibers of a certain family of abelian varieties.
iv) (Mattuck [19]) Certain abelian varieties with a condition on the period ma-

trix.

Remark 2.34. Tate announced item i) above in a 1964 Seminary, but did not give
a proof. A complete proof was given by Murasaki [20] 4 years later. The idea of
the proof is simple, write everything explicitly and show that Dp(En) = Bp(En)
by induction on p. This proof can’t naturally be generalized to all abelian vari-
eties because some abelian varieties have Dp(A) 6= Bp(A) and explicit cohomology
computations tends to be very hard to do in the general case.

Definition 2.35. A Hodge cycle α ∈ Bp(A) is said to be exceptional if it’s not in
Dp(A), i.e it’s not an intersection of divisors.

As discussed above, some Abelian varieties of Fermat type have exceptional
Hodge classes, and the Hodge conjecture is still true. On the other hand, Mumford
[22] gave an example of an Abelian fourfold of CM type with an exceptional Hodge
class for which, after 50 years, we still don’t know if it is algebraic.

Like Hodge cycles that don’t come from the induced structure in Fermat varieties,
exceptional Hodge classes in Abelian varieties are candidates for counter-example
to the Hodge conjecture. A complete proof that exceptional Hodge classes are
algebraic is what is still missing to solve the Hodge conjecture for all Abelian
varieties. Certainly, such a proof is as difficult to find as it is to prove the Hodge
conjecture for any X, Abelian or not.
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3. The Griffiths-Green program

Around 2006, Griffiths and Green [12] outlined a method that potentially could
prove the Hodge conjecture. The aim of this section is to describe their ideas and
discuss some examples. To learn more about this approach please see Griffiths-
Green’s original paper [12], Brosnan et al [4] and the wonderful survey [15].

Note that if one wants to prove the Hodge conjecture by induction on dimension,
then it’s enough to assume that X has dimension n = 2m and prove the Hodge
conejcture for (m,m)-classes, that is p = m. Indeed, by Hard Lefschetz (theorem
2.2), it’s enough to prove for (p, p)-classes where 2p ≤ n. Suppose 2p < n, let
k := n − 2p and Y be a 2p-dimensional subvariety of X obtained by the complete
intersection of k general hyperplane sections of X, we can assume by induction that
the Hodge conjecture is true for Y . Now, let α ∈ Hp,p(X,Q) be a Hodge class, and
i : Y → X the inclusion map, then i∗(α) is an algebraic Hodge class [ZY ] in Y . If
we let Y varies in family of complete intersections covering X, [ZY ] glue together
to an algebraic cycle [Z] on X, with the property that i∗([Z]) = i∗(α), but by
Lefschetz’s hyperplane section theorem (2.2), i∗ is injective on (p, p) classes, hence
[Z] = α.

From now on, we assume thatX has dimension n = 2p and we are after the Hodge
conjecture for (p, p)-classes. Let Y be a hyperplane section of X with inclusion
i : Y → X and LX the Lefschetz operator, which is the cup product with the
Kahler class of X. Then we have the following diagram:

Hn−2(Y,Q)

Hn−2(X,Q) Hn(X,Q)

i∗∼

LX

The isomorphism is by weak lefschetz (2.1). Then by Lefschetz decomposition
theorem we have Hn(X,Q) = Primn(X,Q)⊕ i∗(Hn−2(Y,Q)), and on the level of
Hodge components we have:

Hp,p(X,Q) = Primp,p(X,Q)⊕ i∗(Hp−1,p−1(Y,Q))

Therefore, if we want to use induction to prove the Hodge conjecture it’s enough
to prove the result for primitive Hodge classes α ∈ Primp,p(X,Q).

SetHgp(X) := Primp,p(X,Q) and suppose we are given a very ample line bundle
L→ X whose first Chern class c1(L) is in the class of the Kahler form of X.

Let S̄ := |L| the complete linear system of divisors associated with L, X the
incidence variety

X = {(x, s) ∈ X × S̄ | s(x) = 0}
with natural morphism π : X → S̄, and X̂ be the dual variety of X (points s in
S̄ such that Xs = π−1(s) is singular). Let H be the variation of Hodge structures

over S := S̄ − X̂ associated to the local system H := R2p−1πsm∗ Z(m).
Recall from Section 1 that a (extended) normal function is a section of the

Jacocian bundle Je, see 1.1. In our setting, the Xt are given by zero sections of L
and are not necessarily a Lefschetz pencil, so we generalize the definition as follows.

Definition 3.1. Let H be a variation of polarized Hodge structures of weight −1
over S and J(H) be the associated Jacobian bundle. We have the following exact
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sequence:
0→ H→ H/F0 → J(H)→ 0

a normal function is a section of J(H).

As before (see Section 1), taking cohomology of the above sequence, we see
there’s a map

[.] : H0(S, J(H))→ H1(S,Z)

Let’s assume now that S is a quasi-projective variety inside a smooth projective
variety S̄ with inclusion i : S → S̄.

Definition 3.2. Let ν ∈ H0(S, J(H)) be a normal function. Then the singularity
of ν at s ∈ S̄, denoted by σs(ν), is the colimit:

σs(ν) = lim−→
s∈U

[νU∩S ] ∈ (R1i∗H)s

The natural image of σs(ν) in cohomology with rational coefficients will be denoted
by sings(ν), and we say ν is singular in S̄ if sings(ν) 6= 0 for some s ∈ S̄.

The variations of Hodge structures that we’ve considered so far actually satisfy
certain additional geometric conditions called admissibility conditions, see [26, 4]
for definitions. The resulting normal functions are then called admissible normal
functions, and we denote by ANF (S,H) the set of all such objects.

Using the above notation, Griffiths and Green [12] conjectured the following:

Conjecture 2. Let α ∈ Hgp(X) and να be the associated admissible normal func-
tion. Then να is singular on S̄ = |L⊗d| for some d > 0.

Interestingly, this conjecture is equivalent to the Hodge conjecture:

Theorem 3.3. (Griffiths-Green [12, 4, 15] Conjecture 2 holds if and only if the
Hodge conjecture holds.

Proof. (Sketch [15]) The proof of this theorem is somewhat technical, so we only
sketch the main ideas involved.

Fix s ∈ X̂ and consider the following diagram:

Hgp(X) ANF (S,H)/Jp(X)

H2p(Xs) (R1j∗HQ)s

ν(.)

αs sings(.)

βs

where αs is the restriction and βs is a map that makes the diagram commute, it
is described in details in [4], and is injective on the image of αs (after possibly
changing L by L⊗d).

Richard Thomas proved in [32] that if the Hodge conjecture is true, every prim-
itive hodge class ζ ∈ Hgp(X) restricts non-trivially to a hypersurface in X. If that

us true then using the diagram 3, we see that for some s ∈ X̂, βs(αs(ζ)) is not zero,
hence sings(νζ) is not zero.

Conversely, suppose sings(νζ) 6= 0 for some s ∈ X̂, then ζ restricts non-trivially

in Xs. Let X̃s the desingularization of Xs and g : X̃s → X the natural inclusion.
Then g∗(ζ) 6= 0, by Poincaré duality there is a Hodge class ξ ∈ Hp−1,p−1(X̃,Q)
such that ξ∪g∗(ζ) 6= 0. Using the exact same argument we used in the beggining of
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this section, we can cover X̃ with hyperplane sections, assume the Hodge conjecture
for the sections and produce an algebraic cycle W on X̃ such that [W ] = ξ, but
then g∗(ζ)∪ ξ = g∗(ζ)∪ [W ] 6= 0, by the projection formula we have ζ ∪ g∗[W ] 6= 0,
by Poincaré duality, ζ has to be algebraic. �

Remark 3.4. Not a single new case of the Hodge conjecture has been proved so far
using theorem 3.3. But examples of this approach to show known cases were given
in [12].

Remark 3.5. A natural question is if conjecture 2 is true, what is the minimal d > 0
for a fixed L? Is d related to any topological or algebraic invariant of X itself?

Remark 3.6. A interpretation of the General Hodge Conjecture in this setting is
discussed in [16]
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