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1.Introduction
Notation: We denote Laurent Polynomials by
f (x1, x2, x3) ∈ C[x±1, y±1, z±1] and write xv = xa1x

b
2 x

c
3 for

v = (a, b, c)

Definition
Let ∆ be a three-dimensional reflexive polytope in R3. Let f be a
Laurent polynomial in three variables. We say that f is a
three-dimensional Minkowski polynomial with Newton polytope
∆ if:

• Newton(f )= ∆

• For each facet Q of ∆ we have:

fQ:Q1,Q2,...,Qn =
∑

v∈Q∩Z3

avx
v

for some admissible lattice Minkowski Decomposition
Q = Q1 + Q2 + · · ·+ Qn and fQ is the facet polynomial to be
defined below.



We can construct Minkowski polynomials by specifying the ”face”
polynomials of ∆ in the following way: To each line segment L
from p to q, we set fL = xp + xq and for each triangle Tn with
vertices u, v ,w such that Tn ∩ Z3 = {u, v = v0, . . . , vn = w}, we
set fTn = xu +

∑n
k=0

(n
k

)
xvk . If a face has a lattice Minkowski

decomposition F = F1 + F2 + · · ·+ Fn, then we set
fF :F1,F2,...,Fn = ΠfFi

. So a lattice Minkowski decomposition
completely determines the Minkowski polynomial.

Example

Let ∆ = conv(e1, e2, e3,−e1 − e2 − e3), the face polynomials are
x + y + z , x + y + (xyz)−1, x + z + (xyz)−1,z + y + (xyz)−1. It
follows from the definition that the Minkowski Polynomial is
f = x + y + z + (xyz)−1.



Definition
We shall say that a linear homogeneous recurrence R with
polynomial coefficients is a recurrence of the Apery type, if there is
a Dirichlet character with L-function L(s), an argument s0 ∈ Z,
s0 > 1 and two solutions of R, an, bn, such that:

lim
an
bn

= cL(s0), c ∈ Q∗

The limit above is called Apery limit of R. For our purposes, the
solutions an, bn will satisfy a0 = 1 and bn is the unique solution
with b0 = 0, b1 = 1.



Example

This example is due Apery. He proved the irrationality of ζ(3) by
considering the recurrence:

n3un − (34n3 − 51n2 + 27n − 5)un−1 + (n − 1)3un−2 = 0

If an is the solution with a0 = 1, a1 = 5,and bn the solution with
b0 = 0, b1 = 1, then he proved that:

|ζ(3)− 6bn
an
| = o(a−2

n )

Therefore, ζ(3)
6 is the Apery limit of the recurrence above.



We now consider the following Fano Picard rank 1 threefolds:

V12 := A section of the orthogonal Grassmannian O(5, 10) by a
codimension 7 plane
V16 := A section of the Lagrangian Grassmannian L(3, 6) by a
codimension 3 plane
V18 := A section of G2/P by a codimension 2 plane

Using a method2 by Golyshev, we can produce
Picard-Fuchs operators(and therefore recurrences from
DPF · X = 0) for each one of the above Fanos. The Apery limit3

for each one of these is:
1
6ζ(3) for V12
7
6ζ(3) for V16
1
3L(χ3, 3) for V18

2Vasily V. Golyshev, Classification problems and mirror duality.,Surveys in
geometry and number theory.London Mathematical Society Lecture Note Series
338, 88-121 (2007)., 2007.

3Golyshev,V., Deresonating a Tate period. arXiv:0908.1458



2.Landau-Ginzburg models

Mirror symmetry relates a Fano variety with a dual object called
Landau-Ginzburg model, which is a variety equipped with a
non-constant complex valued function.For example, a LG model for
P2 is a family of elliptic curves and more generaly, the LG model of
a Fano n-fold is a family of Calabi-Yau (n − 1)-folds. In general,
mirror symmetry relates sympletic properties of a Fano variety with
algebraic ones of the mirror and virce versa.



Using the notation above, let P∆◦ be a Toric degeneration of Vk ,
then each one of these will have a mirror Landau-Ginzburg model,
which is a family of K3 surfaces in P∆, that can be constructed as
follows: Let f be a Minkowski polynomial for ∆, then the family of
K3s is:

Xt := {1− tf (x) = 0} ⊂ P∆



Let ωt = ResXt

( dx1
x1
∧ dx2

x2
∧ dx3

x3
1−tf

)
and γt a vanishing cycle. We define

the period of f by:

Πf (t) =

∫
γt

ωt =
∑

ant
n

Where an is the constant term of f n. We say that an is the period
sequence of f .
Consider a polynomial differential operator L =

∑
tkPk(D) where

Pk(D) is a polynomial in D = t d
dt , then L · Πf (t) = 0 is equivalent

to a linear recursion relation. In practice, to compute L one uses
knowledge of the first few terms of the period sequence and linear
algebra to guess the recursion relation. The operator L is called
Picard Fuchs operator.



Example

Periods of the Mirror Quintic. The period sequence for the
Mirror quintic is an = (5n)!

n!5 ; it satisfies the following recurrence:

(n + 5)5an+1 = (5n + 5)(5n + 1)(5n + 2)(5n + 3)(5n + 4)an

The Picard-Fuchs operator is easily seen to be:

D4 − 5t(5D + 5)(5D + 1)(5D + 2)(5D + 3)(5D + 4)an



In this talk we will prove that the Apery limits described above for
each one of the Vk , have a motivic meaning, more precisely we
prove that these Apery constants are special values of higher
normal functions arising from higher regulators:

Theorem
For each Fano V12,V16 and V18 described above, there is a higher
normal function V such that the constants above are equal to V (0)

The rest of the talk will be dedicated to prove this theorem. The
first thing to do is to prove the following result:



Proposition

Every 3 dimensional Minkowski polynomial f is tempered,i.e the
higher Chow cycle {x1, x2, x3}X∗

t
vanish under the Tame symbol

map.(X ∗t denotes the intersection of Xt with P∆ \ (C∗)3)

Proof
For each Xt , we set D =

⋃
Dσ to be the the intersection of the K3

with the toric boundary. Then the we have the localization exact
sequence:

· · · → CH2(D, 3)→ CH3(Xt , 3)→ CH3(Xt\D, 3)
Res−−→ CH2(D, 2)→ . . .

where Res =
⊕

i Tamei .
Also, the following sequence is exact:

0→ CH2(D, 2)→
⊕
i

CH2(Di \∪Di∩Dj , 2)→
⊕
i ,j

CH1(Di∩Dj , 1)

Here the Di are the irreducible components of D that we get



Proof(cont.)

when setting the facet polynomial equals 0.
By the above sequence we have:

CH2(Di , 2) = Ker{CH2(Di \∪Di ∩Dj , 2)
Res−−→

⊕
j

CH1(Di ∩Dj , 1)}

Now if for every i , j , the composition:

CH3(Xt \ D, 3)
Resi−−→ CH2(Di \ ∪Di ∩ Dj , 2)

Resj−−→ CH1(Di ∩ Dj , 1)

sends ξ to 0, so Resiξ ∈ CH2(Di , 2). Now in dimension 3, the
irreducible pieces of a lattice Minkowski decomposition are either
segments or triangles as was defined above, hence all the Di are
rational and therefore CH2(Di , 2) ∼= K2(C), and if working over Q
we have:

CH2(Di , 2) ∼= K2(Q) = 0



Proof(cont.)

Therefore Resiξ is torsion, in particular the class Resi{x1, x2, x3}X∗
t

is torsion and it follows that the Minkowski polynomial is
tempered. �

Since f is tempered, the family of higher Chow cycles lifts to Xt ,
yielding4 a family of motivic cohomology classes [Ξt ]( in a smooth
fiber this is just higher Chow cycles) on the Landau-Ginzburg
model, i.e in H3

M(Xλ,Q(3)),where we set Xλ := Xt for λ = 1
t .

Therefore if AJ is the Abel-Jacobi map5, then:

AJ([Ξλ]) ∈ H2(Xλ,C/Q(3))

Let Rλ be any lift of this class to H2(Xλ,C), then if
γλ ∈ H2(Xλ,C), it’s clear that the pair 〈Rλ, γλ〉 makes sense.

4Kerr,M; Doran,C. Algebraic K-theory of toric hypersurfaces, CNTP 5
(2011), no. 2, 397-600, Theorem 3.8

5In smooth fibers, AJ takes a rather simple form in terms of currents, see
M. Kerr, J. Lewis, and S. Mller-Stach, The Abel-Jacobi map for higher Chow
groups,Compos. Math. 142 (2006), no. 2, 374-396



Set ω̃t = tωt , for Vk considered above, the degeneration6 of Xλ is
of type III(Maximal unipotent monodromy, i.e Hodge Tate
Limiting mixed Hodge structure), then we can define

Π̃f (t) =
∫
βt
ω̃t , where βt is a vanish cycle around λ = 0. Using

Golyshev’s results7 we have that:

Π̃f (λ) = Πf (λ)

And the Picard-Fuchs operator D̃PF is just DPF with t replaced by
λ.

6A.N. Parshin, I.R. Shafarevich (Eds.) Algebraic Geometry V. Fano
Varieties. Series: Encyclopaedia of Mathematical Sciences, Vol. 47

7Golyshev, V.,Deresonating a Tate period. arXiv:0908.1458.



Under these assumptions and using the notation from above, we
define:

V (λ) := 〈Rλ, ω̃λ〉

It is known8 that this defines a single valued function on a disc
about λ = 0, also: D̃PFV (λ) = {symbol of DPF} × {Yukawa
coupling} = kλ, k ∈ Z.

Set Π̃f (λ) =
∑

n≥0 anλ
n, as remarked above,D̃PF · Π̃f (λ) = 0 is

equivalent to a linear recurrence equation having an as a solution.
Let Pf (λ) := −V (λ) + Π̃f (λ)V (0) =

∑
n≥1 bnλ

n, note that bn is a
solution for the same recurrence. We have that:

V (λ) =
∑

(anV (0)− bn)λn

So |anV (0)− bn| → 0 and |an|, |bn| → ∞, hence bn
an
→ V (0).

8Kerr,M; Doran,C. Algebraic K-theory of toric hypersurfaces, CNTP 5
(2011), no. 2, 397-600, §4.



Therefore, V (0) is the Apery limit for the recurrence obtained by

the period sequence of D̃PF . On the other hand, H3
M(X 0,Q(3))

has a subgroup H1
M(Spec(C),Q(3)) which is indecomposable

K5(Q) so the Abel-Jacobi map restricted to this subgroup is the
Borel regulator. One can prove that V (λ) limits to a value of the
Borel regulator, by Borel’s theorem it has to be(modulo Q(3)) a
multiple of ζ(3). Hence V (0) modulo a rational number is indeed
equals to the Apery constant for each Vk considered above.



What’s next?

• The next obvious cases to check are of course the other
Picard rank one Fano threefolds similar to these, namely,
those that are complete intersection in Grassmanians of simple
Lie groups other than projective spaces: V10 and V12. The
argument above is not valid in those cases since the
Monodromy for those is not maximal unipotent9, in fact is not
even unipotent! Also, with the construction above, one ends
up with a multiple of ζ(3) or a torsion value in Q(3), none of
which can be a multiple of ζ(2), the Apery limit in those
cases. We10 are in the process of describing the Apery
constants in those cases too.

9A.N. Parshin, I.R. Shafarevich (Eds.) Algebraic Geometry V. Fano
Varieties. Series: Encyclopaedia of Mathematical Sciences, Vol. 47

10Joint work with Prof. Charles Doran and Andrew Harder from University of
Alberta



What’s next?

• Another interesting thing that we will describe is the analysis
of the other 101 cases of Fano threefolds.

• The Higher dimension generalization is an interesting non
trivial problem:
Conjecture: For n ≥ 4, the Apery limit of a Landau-Ginzburg
model of a Fano n-fold can be seen as a special value of a
Higher normal function arising from a higher regulator of the
toric symbol {x1, x2, . . . , xn}

• In fact, in dimension greater than 4, we can talk about more
than one ”Apery constants”, basically the question is to
describe the relationship between primitive quantum
cohomology classes in the higher dimensional Fano and the
Landau-Ginzburg model of them.



Thanks!
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