HOMEWORK 1

(1) Show that two charts being related is not an equivalence relation.
(2) How many distinct smooth structures are there in \mathbb{R} ? (There's only one up to diffeomorphism, but that's not the question being asked)
(3) Let $X=\left\{(x, y) \in \mathbb{R}^{2}: y= \pm 1\right\}$, and let M be the quotient of X by the equivalence relation generated by $(x,-1) \sim(x, 1)$ for all $x \neq 0$. Show that M is locally Euclidean and second countable, but not Hausdorff. [This space is called the line with two origins.]
(4) Compute the coordinate representation for each of the following maps, using stereographic coordinates for spheres; use this to conclude that each map is smooth.
(a) $A: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is the antipodal map $A(x)=-x$.
(b) $F: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ is given by $F(z, w)=(z \bar{w}+w \bar{z}, i w \bar{z}-i z \bar{w}, z \bar{z}-w \bar{w})$, where we think of \mathbb{S}^{3} as the subset $\left\{(w, z): w^{2}+z^{2}=1\right\}$ of \mathbb{C}^{2}.
(5) Let C be a curve in \mathbb{R}^{3}. Show that the collection of all vectors normal to C form a 3-dimensional manifold.

