HOMEWORK 1

- (1) Show that two charts being related is **not** an equivalence relation.
- (2) How many distinct smooth structures are there in \mathbb{R} ? (There's only one **up to diffeomorphism**, but that's not the question being asked)
- (3) Let $X = \{(x, y) \in \mathbb{R}^2 : y = \pm 1\}$, and let M be the quotient of X by the equivalence relation generated by $(x, -1) \sim (x, 1)$ for all $x \neq 0$. Show that M is locally Euclidean and second countable, but not Hausdorff. [This space is called the line with two origins.]
- (4) Compute the coordinate representation for each of the following maps, using stereographic coordinates for spheres; use this to conclude that each map is smooth.
 - (a) $A: \mathbb{S}^n \to \mathbb{S}^n$ is the antipodal map A(x) = -x.
 - (b) $F : \mathbb{S}^3 \to \mathbb{S}^2$ is given by $F(z, w) = (z\bar{w} + w\bar{z}, iw\bar{z} iz\bar{w}, z\bar{z} w\bar{w})$, where we think of \mathbb{S}^3 as the subset $\{(w, z) : w^2 + z^2 = 1\}$ of \mathbb{C}^2 .
- (5) Let C be a curve in \mathbb{R}^3 . Show that the collection of all vectors normal to C form a 3-dimensional manifold.