HOMEWORK 3

(1) The length of a smooth curve $\gamma : [a, b] \to \mathbb{R}^n$ is defined to be the value of the (ordinary) integral

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$$

Show that there's no smooth covector field ω on \mathbb{R}^n , with the property that $\int_{\gamma} \omega = L(\gamma)$ for every curve γ .

(2) Suppose X is a smooth vector field on an open set $U \in \mathbb{R}^n$, thought of as a smooth function from \mathbb{R}^n to \mathbb{R}^n . For any piecewise smooth curve segment $\gamma : [a, b] \to U$, define the line integral of X over γ by

$$\int_{\gamma} X \cdot ds = \int_{a}^{b} X(\gamma(t)) \cdot \gamma'(t) dt$$

- and say X is conservative if its line integral around any closed curve is zero.
- (a) Show that X is conservative if and only if there exists a smooth function $f \in C^{\infty}(U)$ such that $X = \nabla f$, the gradient of f. [Hint: Consider the covector field $\omega_x(Y) = X(x) \cdot Y$, where the dot denotes the Euclidean dot product.]
- (b) If n = 3 and X is conservative, show curl X = 0, where

$$\operatorname{curl} X = \left(\frac{\partial X_3}{\partial x_2} - \frac{\partial X_2}{\partial x_3}\right) \frac{\partial}{\partial x_1} + \left(\frac{\partial X_1}{\partial x_3} - \frac{\partial X_3}{\partial x_1}\right) \frac{\partial}{\partial x_2} + \left(\frac{\partial X_2}{\partial x_1} - \frac{\partial X_1}{\partial x_2}\right) \frac{\partial}{\partial x_3}$$

- (c) If $U \in \mathbb{R}^3$ is star-shaped, show that X is conservative on U if and only if curl X = 0.
- (3) If M is a compact manifold and $f \in C^{\infty}(M)$, show that df vanishes somewhere on M.
- (4) If $F: M \to N$ is a smooth map, show that $F^*: T^*N \to T^*M$ is smooth.
- (5) Consider the smooth function $det : GL(n, \mathbb{R}) \to \mathbb{R}$.
 - (a) Using matrix entries A_{ij} as global coordinates on $GL(n, \mathbb{R})$, show that the partial derivatives of the determinant map are given by:

$$\frac{\partial}{\partial A_{ij}} \det(A) = (\det A)(A^{-1})_{ji}$$

(b) Conclude that the differential of the determinant function is

$$d(det)_A(B) = (det A)tr(A^{-1}B)$$

for $A \in GL(n, \mathbb{R})$ and $B \in T_A GL(n, \mathbb{R}) \cong M(n, \mathbb{R})$, where $tr(A) = \sum_i A_{ii}$ is the trace of the matrix A.