SOLUTIONS

- (1) Over \mathbb{R} , consider the open sets U = (0, 1), $V = (\frac{1}{2}, \frac{3}{2})$, $W = (\frac{1}{8}, \frac{1}{4}) \cup (\frac{9}{8}, \frac{5}{4})$. Let I_U, I_V be the identity charts on U and V respectively, and $f(x) = \sqrt{x - \frac{3}{16}}$ be a chart on W. Then $\frac{3}{16} \in U \cap W$ and I_U is not related to f.
- (2) Infinitely(uncountable) many. For each $p \in (0, 1)$, set $\phi_p(x) = x^p$. Since for $p \neq q$, $(\phi_p \circ \phi_q^{-1})(x) = x^{-qp}$, ϕ_p is not related to ϕ_q . Moreover, since (0, 1) is uncountable, the collection $\{\phi_p\}_p$ is uncountable.
- (3) Let $U = M \{[0,1]\}$ and $V = M \{[0,-1]\}$, then $U \cup V = M$. Take the projection on the first coordinate $\pi_1(x, y) = x$, as local chart. It follows that M is locally euclidean. It's also second countable because the projection map $\pi : X \to M$ is open. It's not Hausdorff because one can not separate the point [0, 1] from [0, -1] on M, since any neighborhood of [0, 1] intersects a neighborhood of [0, -1].
- a neighborhood of [0, -1]. (4) Let $\sigma(x_1, \ldots, x_{n+1}) = \frac{1}{1-x_{n+1}}(x_1, \ldots, x_n)$ be the stereographic projection chart on $\mathbb{S}^n - N$, with inverse $\sigma^{-1}(u_1, \ldots, u_n) = \frac{1}{1+|u|^2}(2u_1, \ldots, 2u_n, |u|^2 - 1)$, and let $\bar{\sigma}(x) = \sigma(-x)$ be the chart for the north pole N.
 - (a) The local expression for A on $\mathbb{S}^n N$ is

$$(\bar{\sigma} \circ A \circ \sigma^{-1})(u_1, \dots, u_n) = (u_1, \dots, u_n)$$

which is clearly smooth. The same reasoning applies to $\mathbb{S}^n - S$. (b) Note that as function in \mathbb{R}^4 , F takes the following form:

(0.1)
$$F(x, y, z, w) = (2(xz + yw), 2(-xw + zy), x^2 + y^2 - z^2 - w^2)$$

One the local expression for F is:

(0.2)

$$\begin{aligned} (\bar{\sigma} \circ F \circ \sigma^{-1})(u_1, u_2, u_3) &= \\ &= \bar{\sigma} \circ F(\frac{1}{1+|u|^2}(2u_1, 2u_2, 2u_3, |u|^2 - 1)) \\ &= \bar{\sigma}(2(\frac{2u_1}{1+|u|^2}\frac{2u_3}{1+|u|^2} + \frac{2u_2}{1+|u|^2}\frac{|u|^2 - 1}{1+|u|^2}) \\ &= 2(\frac{-2u_1}{2}\frac{|u|^2 - 1}{1+|u|^2} + \frac{2u_3}{2}\frac{2u_2}{2}) \end{aligned}$$

$$\begin{aligned} & , 2(\frac{-2u_1}{1+|u|^2}\frac{|u|^2-1}{1+|u|^2}+\frac{2u_3}{1+|u|^2}\frac{2u_2}{1+|u|^2})\\ & , \frac{4u_1^2}{(1+|u|^2)^2}+\frac{4u_2^2}{(1+|u|^2)^2}-\frac{4u_3^2}{(1+|u|^2)^2}-\frac{(|u|^2-1)^2}{(1+|u|^2)^2})\\ & = \frac{(1+|u|^2)^2}{8u_1^2+8u_2^2}(-2(\frac{2u_1}{1+|u|^2}\frac{2u_3}{1+|u|^2}+\frac{2u_2}{1+|u|^2}\frac{|u|^2-1}{1+|u|^2})\\ & , -2(\frac{-2u_1}{1+|u|^2}\frac{|u|^2-1}{1+|u|^2}+\frac{2u_3}{1+|u|^2}\frac{2u_2}{1+|u|^2})))\\ & = \frac{1}{2(u_1^2+u_2^2)}(-2u_1u_3-u_2(|u|^2-1),u_1(|u|^2-1)+2u_3u_2))\end{aligned}$$

SOLUTIONS

which is smooth when $u_1, u_2 \neq 0$, if we use $(\sigma \circ F \circ \sigma^{-1})$ instead, the denominator in the last equation will be

$$(1+|u|^2)^2 - 4u_1^2 - 4u_2^2 + 4u_3^2 + (|u|^2 - 1)^2$$

which is $2|u|^4 + 2 - 4u_1^2 - 4u_2^2 + 4u_3^2$. If $u_1 = u_2 = 0$, the last expression is $2u_3^4 + 2 + 4u_3^2$, which is never zero.

(5) Let NC be the the collection of all vectors normal to C. A point in NC is of the form (p, v) where p is in C and v is normal. For every $(p, v) \in NC$, let (x, U) be a chart in C around p. If $v = v_1e_1 + v_2e_2$, where $\{e_1, e_2\}$ is a basis for the normal plane at p, the map $\phi(p, v) = (x(p), v_1, v_2)$ satisfies all the conditions of lemma 1.14 of Lee's book, hence define a smooth structure on NC.