SOLUTIONS

(1) Over \mathbb{R}, consider the open sets $U=(0,1), V=\left(\frac{1}{2}, \frac{3}{2}\right)$, $W=\left(\frac{1}{8}, \frac{1}{4}\right) \cup\left(\frac{9}{8}, \frac{5}{4}\right)$. Let I_{U}, I_{V} be the identity charts on U and V respectively, and $f(x)=$ $\sqrt{x-\frac{3}{16}}$ be a chart on W. Then $\frac{3}{16} \in U \cap W$ and I_{U} is not related to f.
(2) Infinitely(uncountable) many. For each $p \in(0,1)$, set $\phi_{p}(x)=x^{p}$. Since for $p \neq q,\left(\phi_{p} \circ \phi_{q}^{-1}\right)(x)=x^{-q p}, \phi_{p}$ is not related to ϕ_{q}. Moreover, since $(0,1)$ is uncountable, the collection $\left\{\phi_{p}\right\}_{p}$ is uncountable.
(3) Let $U=M-\{[0,1]\}$ and $V=M-\{[0,-1]\}$, then $U \cup V=M$. Take the projection on the first coordinate $\pi_{1}(x, y)=x$, as local chart. It follows that M is locally euclidean. It's also second countable because the projection map $\pi: X \rightarrow M$ is open. It's not Hausdorff because one can not separate the point $[0,1]$ from $[0,-1]$ on M, since any neighborhood of $[0,1]$ intersects a neighborhood of $[0,-1]$.
(4) Let $\sigma\left(x_{1}, \ldots, x_{n+1}\right)=\frac{1}{1-x_{n+1}}\left(x_{1}, \ldots, x_{n}\right)$ be the stereographic projection chart on $\mathbb{S}^{n}-N$, with inverse $\sigma^{-1}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{1+|u|^{2}}\left(2 u_{1}, \ldots, 2 u_{n},|u|^{2}-\right.$ 1), and let $\bar{\sigma}(x)=\sigma(-x)$ be the chart for the north pole N.
(a) The local expression for A on $\mathbb{S}^{n}-N$ is

$$
\left(\bar{\sigma} \circ A \circ \sigma^{-1}\right)\left(u_{1}, \ldots, u_{n}\right)=\left(u_{1}, \ldots, u_{n}\right)
$$

which is clearly smooth. The same reasoning applies to $\mathbb{S}^{n}-S$.
(b) Note that as function in \mathbb{R}^{4}, F takes the following form:

$$
\begin{equation*}
F(x, y, z, w)=\left(2(x z+y w), 2(-x w+z y), x^{2}+y^{2}-z^{2}-w^{2}\right) \tag{0.1}
\end{equation*}
$$

One the local expression for F is:

$$
\begin{align*}
\left(\bar{\sigma} \circ F \circ \sigma^{-1}\right)\left(u_{1}, u_{2}, u_{3}\right) & = \tag{0.2}\\
& =\bar{\sigma} \circ F\left(\frac{1}{1+|u|^{2}}\left(2 u_{1}, 2 u_{2}, 2 u_{3},|u|^{2}-1\right)\right) \\
& =\bar{\sigma}\left(2\left(\frac{2 u_{1}}{1+|u|^{2}} \frac{2 u_{3}}{1+|u|^{2}}+\frac{2 u_{2}}{1+|u|^{2}} \frac{|u|^{2}-1}{1+|u|^{2}}\right)\right. \\
& , 2\left(\frac{-2 u_{1}}{1+|u|^{2}} \frac{|u|^{2}-1}{1+|u|^{2}}+\frac{2 u_{3}}{1+|u|^{2}} \frac{2 u_{2}}{1+|u|^{2}}\right) \\
& \left., \frac{4 u_{1}^{2}}{\left(1+|u|^{2}\right)^{2}}+\frac{4 u_{2}^{2}}{\left(1+|u|^{2}\right)^{2}}-\frac{4 u_{3}^{2}}{\left(1+|u|^{2}\right)^{2}}-\frac{\left(|u|^{2}-1\right)^{2}}{\left(1+|u|^{2}\right)^{2}}\right) \\
& =\frac{\left(1+|u|^{2}\right)^{2}}{8 u_{1}^{2}+8 u_{2}^{2}}\left(-2\left(\frac{2 u_{1}}{1+|u|^{2}} \frac{2 u_{3}}{1+|u|^{2}}+\frac{2 u_{2}}{1+|u|^{2}} \frac{|u|^{2}-1}{1+|u|^{2}}\right)\right. \\
, & \left.-2\left(\frac{-2 u_{1}}{1+|u|^{2}} \frac{|u|^{2}-1}{1+|u|^{2}}+\frac{2 u_{3}}{1+|u|^{2}} \frac{2 u_{2}}{1+|u|^{2}}\right)\right) \\
& =\frac{1}{2\left(u_{1}^{2}+u_{2}^{2}\right)}\left(-2 u_{1} u_{3}-u_{2}\left(|u|^{2}-1\right), u_{1}\left(|u|^{2}-1\right)+2 u_{3} u_{2}\right)
\end{align*}
$$

which is smooth when $u_{1}, u_{2} \neq 0$, if we use $\left(\sigma \circ F \circ \sigma^{-1}\right)$ instead, the denominator in the last equation will be

$$
\left(1+|u|^{2}\right)^{2}-4 u_{1}^{2}-4 u_{2}^{2}+4 u_{3}^{2}+\left(|u|^{2}-1\right)^{2}
$$

which is $2|u|^{4}+2-4 u_{1}^{2}-4 u_{2}^{2}+4 u_{3}^{2}$. If $u_{1}=u_{2}=0$, the last expression is $2 u_{3}^{4}+2+4 u_{3}^{2}$, which is never zero.
(5) Let $N C$ be the the collection of all vectors normal to C. A point in $N C$ is of the form (p, v) where p is in C and v is normal. For every $(p, v) \in N C$, let (x, U) be a chart in C around p. If $v=v_{1} e_{1}+v_{2} e_{2}$, where $\left\{e_{1}, e_{2}\right\}$ is a basis for the normal plane at p, the map $\phi(p, v)=\left(x(p), v_{1}, v_{2}\right)$ satisfies all the conditions of lemma 1.14 of Lee's book, hence define a smooth structure on $N C$.

