SOLUTIONS

- (1) Let (p, v) and (q, w) points in TM. If $p \neq q$, let (x, U), (y, V) be charts around p and q respectively. Since M is Hausdorff by definition, we can assume $U \cap V = \emptyset$. Then $TU \cap TV = \emptyset$, since $TU = \{(p, v) : p \in U, v \in T_pM\}$ and $U \cap V = \emptyset$. Now suppose p = q, let (x, U) be a chart around p. Note that T_pM is a vector space, in particular is Hausdorff. Let A and B be two open sets containing v and w respectively. Then $(U \times A) \cap (U \times B) = \emptyset$, moreover $(U \times A)$ and $(U \times B)$ are open sets of TM.
- (2) (a) By using the definition of the charts on TM, we have:

$$(\bar{\psi}\circ\bar{\phi}^{-1})(x_1,\ldots,x_n,a_1,\ldots,a_n)=\bar{\psi}(x^{-1}(x_1,\ldots,x_n),\Sigma a_i\frac{\partial}{\partial x_i})$$

the latter is equal to:

$$(y \circ x^{-1}(x_1, \dots, x_n), \Sigma a_i \frac{\partial y_1}{\partial x_i}, \dots, \Sigma a_i \frac{\partial y_n}{\partial x_i})$$

Hence the Jacobian matrix is:

- 0

$$(0.1) \qquad \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n} & 0 & \dots & 0\\ \frac{\partial y_2}{\partial x_1} & \dots & \frac{\partial y_2}{\partial x_n} & 0 & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ \frac{\partial y_n}{\partial x_1} & \dots & \frac{\partial y_n}{\partial x_n} & 0 & \dots & 0\\ 0 & \dots & 0 & \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n}\\ 0 & \dots & 0 & \frac{\partial y_2}{\partial x_1} & \dots & \frac{\partial y_2}{\partial x_n}\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & \dots & 0 & \frac{\partial y_n}{\partial x_1} & \dots & \frac{\partial y_n}{\partial x_n} \end{bmatrix}$$

(b) Follows directly from 0.1.

- (3) Fix p ∈ M, (x, U) a chart at p, and let S = {q ∈ M : f(q) = f(p)}. Since F_{*} = Σ∂F/∂x_i, F_{*} = 0 → ∂F/∂x_i = 0 for each i, therefore the local expression of F, say F̂, which is a real valued function, has all partial derivatives zero, hence is constant on x(U). It follows that F is constants in a neighborhood of p, so the set S is open, moreover it's also closed since F (being smooth) is continuous. By the connectness of M, S = M.
- (4) (This problem illustrates the famous 'Hairy ball theorem'(https://en. wikipedia.org/wiki/Hairy_ball_theorem)) This is one of those "guess me" question. You will probably see these types of exercises a lot in your courses. The best approach to such type of question is to start by trying simple things first. For example, the vector field $\frac{\partial}{\partial x_i}$, where (x_1, x_2, x_3) are stereographic coordinates defined on the sphere minus the north pole. Let's choose $\frac{\partial}{\partial x_1}$. Then it is a smooth non zero vector field defined over $\mathbb{S}^2 - N$. If (y_1, y_2, y_3) are the coordinates on $\mathbb{S}^2 - S$, let's see what is the expression

for $\frac{\partial}{\partial x_1}$ in terms of the y_i 's. For every $p \in \mathbb{S}^2 - \{N, S\}$:

$$\frac{\partial}{\partial x_1} = \frac{\partial y_1}{\partial x_1} \frac{\partial}{\partial y_1} + \frac{\partial y_2}{\partial x_1} \frac{\partial}{\partial y_2}$$

Recal that:

$$(y \circ x^{-1})(x_1, x_2) = y(\frac{2x_1}{|x|^2 + 1}, \frac{2x_2}{|x|^2 + 1}, \frac{|x|^2 - 1}{|x|^2 + 1}) = (-\frac{x_1}{|x|^2}, -\frac{x_2}{|x|^2})$$

Therefore

$$\frac{\partial}{\partial x_1} = \frac{x_1^2 - x_2^2}{|x|^4} \frac{\partial}{\partial y_1} + \frac{2x_1x_2}{|x|^4} \frac{\partial}{\partial y_2}$$
$$\frac{\partial}{\partial x_1} = (y_1^2 - y_2^2) \frac{\partial}{\partial y_1} + 2y_1y_2 \frac{\partial}{\partial y_2}$$

Now note that $(y_1^2 - y_2^2) \frac{\partial}{\partial y_1} + 2y_1 y_2 \frac{\partial}{\partial y_2}$ vanishes at the north pole (N=(0,0) in y-coordinates). So indeed, $\frac{\partial}{\partial x_1}$ is what we want! We just define a global vector field on the sphere which is $\frac{\partial}{\partial x_1}$ on $\mathbb{S}^2 - N$ and $(y_1^2 - y_2^2) \frac{\partial}{\partial y_1} + 2y_1 y_2 \frac{\partial}{\partial y_2}$ on $\mathbb{S}^2 - S$. It is smooth and well defined on the charts' intersection.

(5) Please take a moment to read Staples' proof of a variant of this question using characteristic classes: http://www.ams.org/journals/proc/ 1967-018-03/S0002-9939-1967-0219082-6/S0002-9939-1967-0219082-6. pdf

We first show that \mathbb{S}^1 is parallelizable, which is to say that there is smooth global frame. Since $T_p \mathbb{S}^1$ is 1-dimensional for every p, what we have to show is that there is a smooth nowhere vanishing vector field defined on the whole \mathbb{S}^1 . By adapting the proof from the previous question, we see that $\frac{d}{dx}$ vanishes, hence we need to try another one in this case. Well, the other obvious one is $\frac{d}{dy}$, where y is coordinate on $\mathbb{S}^1 - S$, but by symmetry $\frac{d}{dy}$ would vanish as well. So we consider the next logical candidate $\frac{d}{d\theta}$, where θ is the polar coordinate on \mathbb{S}^1 . More precisely, we have the chart $(f, \mathbb{S}^1 - \{x \leq 0\})$, where $f(x, y) = \arctan(\frac{y}{x})$ and $f^{-1}(\theta) = (\cos\theta, \sin\theta)$. Then:

$$\frac{d}{d\theta} = \frac{dx}{d\theta} \frac{d}{dx}$$

but $(x \circ f^{-1})(\theta) = \frac{\cos\theta}{1-\sin\theta}$, therefore $\frac{dx}{d\theta} = \frac{1}{1-\sin\theta}$, so
 $\frac{d}{d\theta} = \frac{1}{1-\sin\theta} \frac{d}{dx} = \frac{x^2+1}{2} \frac{d}{dx}$

and voila! Now we have a strong candidate for a global frame. Let's see it's expression on the y-coordinate. Recall that $\frac{d}{dx} = \frac{dy}{dx}\frac{d}{dy}$, and $y(x) = \frac{-1}{x}$. We conclude that:

$$\frac{x^2 + 1}{2}\frac{d}{dx} = \frac{1 + y^2}{2}\frac{d}{dy}$$

Thus, the nowhere vanishing vector field $\frac{x^2+1}{2}\frac{d}{dx}$ defines a global frame for \mathbb{S}^1 . Now we claim that any finite product of \mathbb{S}^1 is also parallelizable. Indeed, the global frame (in stereographic coordinates) is given by the *n* smooth vector fields $0 \oplus \cdots \oplus 0 \oplus \frac{x_i^2+1}{2}\frac{d}{dx_i} \oplus 0 \oplus \cdots \oplus 0$, which is $\frac{x_i^2+1}{2}\frac{d}{dx_i}$ on the i-th position and 0 everywhere else. Where we are using the fact that

 $\mathbf{2}$

SOLUTIONS

 $T_{(p,q)}(M,N) \cong T_pM \oplus T_qN$, which follows from taking the derivatives of the projection $M \times N \to M$ and $M \times N \to N$.