## SOLUTIONS

(1) Let $(p, v)$ and $(q, w)$ points in $T M$. If $p \neq q$, let $(x, U),(y, V)$ be charts around $p$ and $q$ respectively. Since $M$ is Hausdorff by definition, we can assume $U \cap V=\emptyset$. Then $T U \cap T V=\emptyset$, since $T U=\{(p, v): p \in U, v \in$ $\left.T_{p} M\right\}$ and $U \cap V=\emptyset$. Now suppose $p=q$, let $(x, U)$ be a chart around $p$. Note that $T_{p} M$ is a vector space, in particular is Hausdorff. Let $A$ and $B$ be two open sets containing $v$ and $w$ respectively. Then $(U \times A) \cap(U \times B)=\emptyset$, moreover $(U \times A)$ and $(U \times B)$ are open sets of $T M$.
(2) (a) By using the definition of the charts on $T M$, we have:

$$
\left(\bar{\psi} \circ \bar{\phi}^{-1}\right)\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{n}\right)=\bar{\psi}\left(x^{-1}\left(x_{1}, \ldots, x_{n}\right), \Sigma a_{i} \frac{\partial}{\partial x_{i}}\right)
$$

the latter is equal to:

$$
\left(y \circ x^{-1}\left(x_{1}, \ldots, x_{n}\right), \Sigma a_{i} \frac{\partial y_{1}}{\partial x_{i}}, \ldots, \Sigma a_{i} \frac{\partial y_{n}}{\partial x_{i}}\right)
$$

Hence the Jacobian matrix is:

$$
\left[\begin{array}{cccccc}
\frac{\partial y_{1}}{\partial x_{1}} & \ldots & \frac{\partial y_{1}}{\partial x_{n}} & 0 & \ldots & 0 \\
\frac{\partial y_{2}}{\partial x_{1}} & \ldots & \frac{\partial y_{2}}{\partial x_{n}} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{\partial y_{n}}{\partial x_{1}} & \ldots & \frac{\partial y_{n}}{\partial x_{n}} & 0 & \ldots & 0 \\
0 & \ldots & 0 & \frac{\partial y_{1}}{\partial x_{1}} & \ldots & \frac{\partial y_{1}}{\partial x_{n}} \\
0 & \ldots & 0 & \frac{\partial y_{2}}{\partial x_{1}} & \ldots & \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & \frac{\partial y_{n}}{\partial x_{1}} & \ldots & \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right]
$$

(b) Follows directly from 0.1
(3) Fix $p \in M,(x, U)$ a chart at $p$, and let $S=\{q \in M: f(q)=f(p)\}$. Since $F_{*}=\Sigma \frac{\partial F}{\partial x_{i}}, F_{*}=0 \rightarrow \frac{\partial F}{\partial x_{i}}=0$ for each $i$, therefore the local expression of $F$, say $\hat{F}$, which is a real valued function, has all partial derivatives zero, hence is constant on $x(U)$. It follows that $F$ is constants in a neighborhood of $p$, so the set $S$ is open, moreover it's also closed since $F$ (being smooth) is continuous. By the connectness of $M, S=M$.
(4) (This problem illustrates the famous 'Hairy ball theorem' https://en. wikipedia.org/wiki/Hairy_ball_theorem)) This is one of those "guess me" question. You will probably see these types of exercises a lot in your courses. The best approach to such type of question is to start by trying simple things first. For example, the vector field $\frac{\partial}{\partial x_{i}}$, where $\left(x_{1}, x_{2}, x_{3}\right)$ are stereographic coordinates defined on the sphere minus the north pole. Let's choose $\frac{\partial}{\partial x_{1}}$. Then it is a smooth non zero vector field defined over $\mathbb{S}^{2}-N$. If $\left(y_{1}, y_{2}, y_{3}\right)$ are the coordinates on $\mathbb{S}^{2}-S$, let's see what is the expression
for $\frac{\partial}{\partial x_{1}}$ in terms of the $y_{i}$ 's. For every $p \in \mathbb{S}^{2}-\{N, S\}$ :

$$
\frac{\partial}{\partial x_{1}}=\frac{\partial y_{1}}{\partial x_{1}} \frac{\partial}{\partial y_{1}}+\frac{\partial y_{2}}{\partial x_{1}} \frac{\partial}{\partial y_{2}}
$$

Recal that:
$\left(y \circ x^{-1}\right)\left(x_{1}, x_{2}\right)=y\left(\frac{2 x_{1}}{|x|^{2}+1}, \frac{2 x_{2}}{|x|^{2}+1}, \frac{|x|^{2}-1}{|x|^{2}+1}\right)=\left(-\frac{x_{1}}{|x|^{2}},-\frac{x_{2}}{|x|^{2}}\right)$
Therefore

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} & =\frac{x_{1}^{2}-x_{2}^{2}}{|x|^{4}} \frac{\partial}{\partial y_{1}}+\frac{2 x_{1} x_{2}}{|x|^{4}} \frac{\partial}{\partial y_{2}} \\
\frac{\partial}{\partial x_{1}} & =\left(y_{1}^{2}-y_{2}^{2}\right) \frac{\partial}{\partial y_{1}}+2 y_{1} y_{2} \frac{\partial}{\partial y_{2}}
\end{aligned}
$$

Now note that $\left(y_{1}^{2}-y_{2}^{2}\right) \frac{\partial}{\partial y_{1}}+2 y_{1} y_{2} \frac{\partial}{\partial y_{2}}$ vanishes at the north pole $(\mathrm{N}=(0,0)$ in y-coordinates). So indeed, $\frac{\partial}{\partial x_{1}}$ is what we want! We just define a global vector field on the sphere which is $\frac{\partial}{\partial x_{1}}$ on $\mathbb{S}^{2}-N$ and $\left(y_{1}^{2}-y_{2}^{2}\right) \frac{\partial}{\partial y_{1}}+2 y_{1} y_{2} \frac{\partial}{\partial y_{2}}$ on $\mathbb{S}^{2}-S$. It is smooth and well defined on the charts' intersection.
(5) Please take a moment to read Staples' proof of a variant of this question using characteristic classes: http://www.ams.org/journals/proc/ 1967-018-03/S0002-9939-1967-0219082-6/S0002-9939-1967-0219082-6. pdf

We first show that $\mathbb{S}^{1}$ is parallelizable, which is to say that there is smooth global frame. Since $T_{p} \mathbb{S}^{1}$ is 1-dimensional for every $p$, what we have to show is that there is a smooth nowhere vanishing vector field defined on the whole $\mathbb{S}^{1}$. By adapting the proof from the previous question, we see that $\frac{d}{d x}$ vanishes, hence we need to try another one in this case. Well, the other obvious one is $\frac{d}{d y}$, where $y$ is coordinate on $\mathbb{S}^{1}-S$, but by symmetry $\frac{d}{d y}$ would vanish as well. So we consider the next logical candidate $\frac{d}{d \theta}$, where $\theta$ is the polar coordinate on $\mathbb{S}^{1}$. More precisely, we have the chart $\left(f, \mathbb{S}^{1}-\{x \leq 0\}\right)$, where $f(x, y)=\arctan \left(\frac{y}{x}\right)$ and $f^{-1}(\theta)=(\cos \theta, \sin \theta)$. Then:

$$
\frac{d}{d \theta}=\frac{d x}{d \theta} \frac{d}{d x}
$$

but $\left(x \circ f^{-1}\right)(\theta)=\frac{\cos \theta}{1-\sin \theta}$, therefore $\frac{d x}{d \theta}=\frac{1}{1-\sin \theta}$, so

$$
\frac{d}{d \theta}=\frac{1}{1-\sin \theta} \frac{d}{d x}=\frac{x^{2}+1}{2} \frac{d}{d x}
$$

and voila! Now we have a strong candidate for a global frame. Let's see it's expression on the y -coordinate. Recall that $\frac{d}{d x}=\frac{d y}{d x} \frac{d}{d y}$, and $y(x)=\frac{-1}{x}$. We conclude that:

$$
\frac{x^{2}+1}{2} \frac{d}{d x}=\frac{1+y^{2}}{2} \frac{d}{d y}
$$

Thus, the nowhere vanishing vector field $\frac{x^{2}+1}{2} \frac{d}{d x}$ defines a global frame for $\mathbb{S}^{1}$. Now we claim that any finite product of $\mathbb{S}^{1}$ is also parallelizable. Indeed, the global frame (in stereographic coordinates) is given by the $n$ smooth vector fields $0 \oplus \cdots \oplus 0 \oplus \frac{x_{i}^{2}+1}{2} \frac{d}{d x_{i}} \oplus 0 \oplus \cdots \oplus 0$, which is $\frac{x_{i}^{2}+1}{2} \frac{d}{d x_{i}}$ on the i -th position and 0 everywhere else. Where we are using the fact that
$T_{(p, q)}(M, N) \cong T_{p} M \oplus T_{q} N$, which follows from taking the derivatives of the projection $M \times N \rightarrow M$ and $M \times N \rightarrow N$.

