SOLUTIONS

(1) Suppose that there is a smooth covector field ω with such property, and let $\omega=f_{1} d x_{1}+f_{2} d x_{2}+\cdots+f_{n} d x_{n}$. For every curve we have:

$$
\int_{\gamma} \omega=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

In particular, consider the curves $\alpha(t)=(1-t, 0, \ldots, 0)$ and $\beta(t)=(t, 0, \ldots, 0)$ defined on $[0,1]$. Clearly, $L(\alpha)=L(\beta)=1$. We have:

$$
\begin{aligned}
\int_{\alpha} \omega & =\int_{0}^{1}\left(f_{1} \circ \alpha\right) \alpha_{1}^{\prime}(t) d t \\
& =-\int_{0}^{1}\left(f_{1} \circ \alpha\right) d t \\
& =-\int_{0}^{1} f_{1}(1-t, 0, \ldots, 0) d t \\
& =-\int_{0}^{1} f_{1}(t, 0, \ldots, 0) d t \\
& =-\int_{\beta} \omega
\end{aligned}
$$

Thus $L(\alpha)=-L(\beta)$, a contradiction.
(2) (a) If $X=\nabla f=\sum \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial x_{i}}$. Then $\int_{\gamma} X \cdot d s=\int_{a}^{b} \sum \frac{\partial f(\gamma(t))}{\partial x_{i}} \gamma_{i}^{\prime}(t)=\int_{a}^{b}(f \circ$ $\gamma)^{\prime}(t) d t=f(\gamma(b))-f(\gamma(a))=0$. Now suppose X conservative. We claim that the smooth covector field ω_{x} is conservative, where $\omega_{x}(Y)=X(x) \cdot Y$. Indeed, $\int_{\gamma} \omega=\int_{\gamma} X \cdot d s$ by construction, in particular $\int_{\gamma} \omega$ depend only of the endpoints. Hence $\omega=d f$, which implies that $X=\nabla f$.
(b) This follows directly from the definition of curl X, since for any smooth function $\frac{\partial f}{\partial x_{i} \partial x_{j}}=\frac{\partial f}{\partial x_{j} \partial x_{i}}$.
(c) By (b), we only need to prove the converse. Using the same smooth covector field ω from (a), by Proposition 4.27 in Lee's book, we get that ω is closed, hence exact and the result follows.
(3) Since f is smooth, it is continuous. The image of a compact under a continuous map is compact, so the image of f is a compact of the real line,i.e is contained in a closed interval.(Compact in the real line $=$ Bounded and closed) So f attains a maximal and minimal value at M, if f were a real function we would claim that maximal and minimal have zero differential, but not so fast, we are in a manifold setting now! Well, we can "turn" f into a real variable one, more precisely: Let $p \in M$, such that $f(p)$ is maximal and $\left(x=x_{1}, \ldots, x_{n}\right)$ a system of coordinates around p, and consider $f \circ x^{-1}$. Then $x(p)$ is a maximal point of the real valued function $f \circ x^{-1}$, and we now from calculus that a maximal point has all partial
derivatives equal 0 , which is the same thing of saying that $\frac{\partial\left(f \circ x^{-1}\right)(x(p))}{x_{j}}=0$. But $d f_{p}=\sum \frac{\partial f(p)}{x_{i}}\left(d x_{i}\right)_{p}$, but $\frac{\partial f(p)}{x_{i}}=\frac{\partial\left(f \circ x^{-1}\right)(x(p))}{x_{i}}=0$, therefore $d f_{p}=0$.
(4) Let $\alpha=\left(\left(y=y_{1}, \ldots, y_{n}\right), v=\left(v_{1}, \ldots v_{n}\right)\right)$ be a system of coordinates at $(F(p), v) \in T^{*} N$, and $\beta=\left(\left(x=x_{1}, \ldots, x_{n}\right), w=\left(w_{1}, \ldots w_{n}\right)\right)$ a system of coordinates at $\left(p, F^{*} v\right)$. The local expression for F is then $\beta \circ F \circ$ α^{-1}. Note that $\alpha^{-1}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)=\left(F\left(x^{-1}\left(a_{1}, \ldots, a_{n}\right)\right), \sum b_{i} d y_{i}\right)$. So $F^{*} \circ \alpha^{-1}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)=F^{*}\left(F\left(x^{-1}\left(a_{1}, \ldots, a_{n}\right)\right), \sum b_{i} d y_{i}\right)=$ $\left(x^{-1}\left(a_{1}, \ldots, a_{n}\right), \sum b_{i} d\left(y_{i} \circ F\right)\right)$. Finally, $\beta \circ F^{*} \circ \alpha^{-1}\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)=$ $\left(x \circ x^{-1}\left(a_{1}, \ldots, a_{n}\right), \sum b_{i} \frac{\partial F_{i}}{\partial x_{1}}, \ldots, \sum b_{i} \frac{\partial F_{i}}{\partial x_{n}}\right)$, the latter expression is smooth since F is.
(5) (a) Using the Laplace's formula we have that:

$$
\operatorname{det}(A)=\sum_{j}(-1)^{i+j} A_{i j} M_{i j}
$$

where $M_{i j}$ is the determinant of the matrix you get by deleting the i-th and j -th row, and fixing the i-th row. Then $\frac{\partial}{\partial A_{i j}} \operatorname{det}(A)=(-1)^{i+j} M_{i j}$. Recall that the cofactor matrix is given by $C_{i j}=(-1)^{i+j} M_{i j}$, and the inverse A^{-1} is just $\frac{1}{\operatorname{det}(A)} C^{T}$. Well, then $M_{i j}$ is just $\operatorname{det}(A) A_{j i}^{-1}$.
(b) Let $B=\sum B_{i j} \frac{\partial}{\partial A_{i j}}$. By definition:
$d(\operatorname{det})_{A}(B)=\sum_{i, j} \frac{\partial \operatorname{det}(A)}{\partial A_{i j}} d A_{i j}(B)=\sum_{i, j} \operatorname{det}(A) A_{j i}^{-1} B_{i j}=\operatorname{det}(A) \sum_{i, j} A_{j i}^{-1} B_{i j}=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} B\right)$

