
SOLUTIONS

(1) Suppose that there is a smooth covector field ω with such property, and let
ω = f1dx1 + f2dx2 + · · ·+ fndxn. For every curve we have:∫

γ

ω =

∫ b

a

|γ′(t)|dt

In particular, consider the curves α(t) = (1−t, 0, . . . , 0) and β(t) = (t, 0, . . . , 0)
defined on [0, 1]. Clearly, L(α) = L(β) = 1. We have:∫

α

ω =

∫ 1

0

(f1 ◦ α)α′1(t)dt

= −
∫ 1

0

(f1 ◦ α)dt

= −
∫ 1

0

f1(1− t, 0, . . . , 0)dt

= −
∫ 1

0

f1(t, 0, . . . , 0)dt

= −
∫
β

ω

(0.1)

Thus L(α) = −L(β), a contradiction.

(2) (a) If X = ∇f =
∑ ∂f

∂xi

∂
∂xi

. Then
∫
γ
X · ds =

∫ b
a

∑ ∂f(γ(t))
∂xi

γ′i(t) =
∫ b
a

(f ◦
γ)′(t)dt = f(γ(b)) − f(γ(a)) = 0. Now suppose X conservative. We claim
that the smooth covector field ωx is conservative, where ωx(Y ) = X(x) ·Y .
Indeed,

∫
γ
ω =

∫
γ
X · ds by construction, in particular

∫
γ
ω depend only of

the endpoints. Hence ω = df , which implies that X = ∇f .
(b) This follows directly from the definition of curl X, since for any

smooth function ∂f
∂xi∂xj

= ∂f
∂xj∂xi

.

(c) By (b), we only need to prove the converse. Using the same smooth
covector field ω from (a), by Proposition 4.27 in Lee’s book, we get that ω
is closed, hence exact and the result follows.

(3) Since f is smooth, it is continuous. The image of a compact under a
continuous map is compact, so the image of f is a compact of the real line,i.e
is contained in a closed interval.(Compact in the real line = Bounded and
closed) So f attains a maximal and minimal value at M , if f were a real
function we would claim that maximal and minimal have zero differential,
but not so fast, we are in a manifold setting now! Well, we can ”turn”
f into a real variable one, more precisely: Let p ∈ M , such that f(p)
is maximal and (x = x1, . . . , xn) a system of coordinates around p, and
consider f ◦ x−1. Then x(p) is a maximal point of the real valued function
f ◦ x−1, and we now from calculus that a maximal point has all partial
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derivatives equal 0, which is the same thing of saying that ∂(f◦x−1)(x(p))
xj

= 0.

But dfp =
∑ ∂f(p)

xi
(dxi)p, but ∂f(p)

xi
= ∂(f◦x−1)(x(p))

xi
= 0, therefore dfp = 0.

(4) Let α = ((y = y1, . . . , yn), v = (v1, . . . vn)) be a system of coordinates
at (F (p), v) ∈ T ∗N , and β = ((x = x1, . . . , xn), w = (w1, . . . wn)) a sys-
tem of coordinates at (p, F ∗v). The local expression for F is then β ◦ F ◦
α−1. Note that α−1(a1, . . . , an, b1, . . . , bn) = (F (x−1(a1, . . . , an)),

∑
bidyi).

So F ∗ ◦ α−1(a1, . . . , an, b1, . . . , bn) = F ∗(F (x−1(a1, . . . , an)),
∑
bidyi) =

(x−1(a1, . . . , an),
∑
bid(yi◦F )). Finally, β◦F ∗◦α−1(a1, . . . , an, b1, . . . , bn) =

(x◦x−1(a1, . . . , an),
∑
bi
∂Fi

∂x1
, . . . ,

∑
bi
∂Fi

∂xn
), the latter expression is smooth

since F is.
(5) (a) Using the Laplace’s formula we have that:

det(A) =
∑
j

(−1)i+jAijMij

where Mij is the determinant of the matrix you get by deleting the i-th and

j-th row, and fixing the i-th row. Then ∂
∂Aij

det(A) = (−1)i+jMij . Recall

that the cofactor matrix is given by Cij = (−1)i+jMij , and the inverse A−1

is just 1
det(A)C

T . Well, then Mij is just det(A)A−1ji .

(b) Let B =
∑
Bij

∂
∂Aij

. By definition:

d(det)A(B) =
∑
i,j

∂det(A)

∂Aij
dAij(B) =

∑
i,j

det(A)A−1ji Bij = det(A)
∑
i,j

A−1ji Bij = det(A)tr(A−1B)


