
SOLUTIONS

• Lee’s 7.2
F is locally defined on the open Ux = {[x, y, z] : x 6= 0} by:

F̂ (y, z) = (1− y2, y, z, yz)

the Jacobian is then: 
−2y 0

1 0
0 1
z y


which has rank 2, hence F is an immersion on Ux. Similarly, F is also
an immersion on Uy, Uz, and hence on P2. The map is obviously smooth
because it’s given in terms of polynomials. Being smooth implies that it’s
continuous, we claim F is injective. Indeed, if F (x, y, z) = F (a, b, c) then:

(x2 − y2, xy, xz, yz) = (a2 − b2, ab, ac, bc)
x2 − y2 = a2 − b2

xy = ab

xz = ac

yz = bc

(0.1)

There are two solutions (x, y, z) = (a, b, c) or (x, y, z) = −(a, b, c), but since
they define the same point in P2, in fact there’s only one solution in P2,

and F is injective. The inverse of F is F−1(a, b, c, d) = [
√

bc2

cd , d
√

b
cd ,

√
dc2

bc ],

which is continuous on the image of F , since cd 6= 0 and bc 6= 0. (because
a point [x, y, z] ∈ P2 can’t have x = y = z = 0)
• Lee’s 7.8

Since a unitary matrix preserves norm, it follows that the action of SU(n)
on S2n−1 is transitive. Hence S2n−1 is a homogeneous space diffeomorphic
to SU(n)/SU(n−1). If n = 2, this shows that S3 is diffeomorphic to SU(2)
since SU(1) is the trivial group 1.
• Lee’s 7.12

The idea here is to find a Hausdorff(since the action is proper) quotient
space which is not locally Euclidean that is also given in terms of group
actions. First examples that comes to mind are ”the cross” , ball with a
hair , book with three pages. The last one has a easy quotient structure.
Let G be subgroup of O(2) generated by the rotation by 120 degrees, denote
it by r, i.e G = {1, r, r2}. G it’s clearly compact, since it’s finite. Now we
define the action on G on the closed 2-ball B2 (note that this is a manifold
with boundary) by letting rk · x = x if x is in the interior of the ball and
rk ·x = rkx if x ∈ S1. This action is not free, because points in the interior
are fixed by the whole group, hence we can’t apply the quotient theorem
here, in fact what we want is to show that this gives a counter-example
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when G does not acts freely. Let X := B/G, since G is compact X is
Hausdorff, a neighborhood of a point x ∈ X is a book with three pages
which can’t be homeomorphic to a ball since if we remove the spine of the
book we are left with three connected components, whereas a ball minus a
line segment has at most 2 components.
• Lee’s 7.14

Matrix groups can been as (topological) subspaces of RN for some N .
Since compact subspaces of RN are the ones which are bounded and closed,
one way of deciding if a given matrix group is compact is by checking these
conditions. Let M(n) be the set of n × n matrices, since the determinant
function det : M(n)→ R is continuous, GL(n,R) = det−1((−∞, 0)∪(0,∞))
is open and hence not compact. On the other hand, SL(n,R) is closed
because it’s det−1({1}), in fact SL(1,R) = 1 is compact, but for n ≥ 2,
SL(n,R) is not compact, since it’s not bounded.The same reasoning applies
to GL(n,C), SL(n,C), and they’re both not compact as weel. Finally, the
only compact in the given list are U(n) and SU(n). We claim that U(n)
is compact, then it follows that SU(n) is compact, because it’s a closed
subgroup of U(n). That U(n) is closed follows from the fact that the
function A→ AA∗ is continuous, since U(n) is the inverse image of I, it is
closed. The columns of a matrix in U(n) form a orthonormal basis for Cn,
thus U(n) is bounded and hence compact.
• Lee’s 7.22

(a) The action is smooth because the components functions are poly-
nomials. Suppose n · (x, y) = (x, y), then (x + n, (−1)ny) = (x, y), from
x+ n = x, we see that n = 0 and hence the action is free. Let K ∈ R2 be
compact, we claim that GK = {n ∈ Z : (nK)∩K 6= ∅} is compact, i.e finite
in this case. Indeed, for (x, y) ∈ K, x+ n is in K for only finitely many n,
because K is bounded, since it’s a compact of R2.

(b) For n ∈ Z, π1(n · (x, y)) = π1(x + n, (−1)ny) = x + n. So the map
π : E → S1, given by π([x, y]) = e2πi(π1([x,y])) is well defined. Moreover, π
is smooth because it is the composition of smooth maps.

(c) For any e2πix ∈ S1, π−1(e2πix) = {[x, y] ∈ E : y ∈ R} ∼= R, which is
a 1 dimensional vector space. Let U = S1 − {1}, then π−1(U) = {[x, y] ∈
E : x 6∈ Z}. Define φ : π−1(U) → U × R by φ([x, y]) = (e2πix

′
, y′), where

[x′, y′] = [x, y] and 0 ≤ x ≤ 1. Notice that we can always make this choice
since e2πz is periodic, also we had to remove 1 in order for φ to be injective.
But now we have to cover 1, we proceed similarly by setting V = S1−{−1},
and defining ψ : π−1(V ) → V × R by ψ([x, y]) = (e2πix

′
, y′), where [x′, y′]

is the representative with −1
2 ≤ x′ ≤ 1

2 . These maps are diffeomorphism
because their coordinates are diffeomorphisms (namely the exponential and
the identity). The fact that π maps fibers diffeomorphic is obvious.

(d) Since π is a rank 1 vector bundle (also called a ”line” bundle), a
smooth global section is just a nowhere vanishing global section. We claim
that there is none and thus π is not trivial. Indeed, global sections of π are
smooth maps s : S1 → E such that s(e2πix) = [x, f(x)] for some smooth
f : R→ R such that f(x+ n) = −f(x), well but since R is connected, the
image of f contains 0 and hence vanishes somewhere.


