SOLUTIONS

- Lee's exercise 8.8

$$
\begin{aligned}
& \text { (a) } F^{*}(r \sigma+\tau)_{p}\left(X_{1}, \ldots, X_{n}\right)=(r \sigma+\tau)_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)= \\
& r \sigma_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)+\tau_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)=r F^{*} \sigma_{p}\left(X_{1}, \ldots, X_{n}\right)+ \\
& F^{*} \tau_{p}\left(X_{1}, \ldots, X_{n}\right) \\
& (\mathrm{b}) F^{*}(f \sigma)_{p}\left(X_{1}, \ldots, X_{n}\right)=(f \sigma)_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)= \\
& f(F(p)) \sigma_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)=(f \circ F)(p) F^{*} \sigma_{p}\left(X_{1}, \ldots, X_{n}\right) \\
& (\mathrm{c}) F^{*}(\sigma \otimes \tau)_{p}\left(X_{1}, \ldots, X_{n}\right)=(\sigma \otimes \tau)\left(\sigma(p)\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)=\right. \\
& \sigma_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right) \otimes \tau_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)=F^{*} \sigma_{p}\left(X_{1}, \ldots, X_{n}\right) \otimes \\
& F^{*} \tau_{p}\left(X_{1}, \ldots, X_{n}\right) \\
& (\mathrm{d})(G \circ F)^{*} \omega_{p}\left(X_{1}, \ldots, X_{n}\right)=\omega_{(G \circ F)(p)}\left((G \circ F)_{*}\left(X_{1}\right), \ldots,(G \circ F)_{*}\left(X_{n}\right)\right)= \\
& \omega_{\left.G(F(p))\left(G_{*} \circ F_{*}\right)\left(X_{1}\right), \ldots,\left(G_{*} \circ F_{*}\right)\left(X_{n}\right)\right)=\left(G^{*} \omega\right)_{F(p)}\left(F_{*}\left(X_{1}\right), \ldots, F_{*}\left(X_{n}\right)\right)=}^{\left(F^{*}\left(G^{*} \omega\right)\right)_{p}\left(X_{1}, \ldots, X_{n}\right)} \\
& (\mathrm{e}) I d^{*} \tau_{p}\left(X_{1}, \ldots, X_{n}\right)=\tau_{I d(p)}\left(I d_{*}\left(X_{1}\right), \ldots, I d_{*}\left(X_{n}\right)\right)=\tau_{p}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

- Lee's exercise 8.9
$(a) \rightarrow(b)$ If $\sigma \in S_{k}$ is any permutation then we claim that $T\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right)$ is $T\left(X_{1}, \ldots, X_{k}\right)$. Indeed, start by exchanging $X_{\sigma(1)}$ with X_{1}, since T is symmetric the value of T remains the same, if we keep doing this until we reach X_{k}, the value remains the same.
(b) \rightarrow (a) Just take the permutation that send i to j.
(b) $\rightarrow(c)$ Let $T=\sum T_{i_{1} i_{2} \ldots i_{k}} \epsilon^{i_{1}} \otimes \ldots \epsilon^{i_{k}}$, then $T_{i_{1} i_{2} \ldots i_{k}}=T\left(E_{1}, \ldots, E_{k}\right)$.

Since $T\left(E_{\sigma(1)}, \ldots, E_{\sigma(k)}\right)=T\left(E_{1}, \ldots, E_{k}\right)$, we have that $T_{i_{1} \ldots i_{k}}=T_{\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \ldots \sigma\left(i_{k}\right)}$.
$(c) \rightarrow(a)$ Take $\sigma=(i j)$, then $T\left(E_{1}, \ldots, E_{i}, \ldots, E_{j}, \ldots, E_{k}\right)=T\left(E_{1}, \ldots, E_{j}, \ldots, E_{i}, \ldots, E_{k}\right)$, since T is k-linear we can extend this property for any $X=\sum E_{j}$.

- Lee's 8.3

Let $f: V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$ be the map $f(T \otimes w)(p)=T(p) w$, since W is a vector space, f is clearly linear. We claim that f is injective, if $f(T \otimes w)=0$ then for every $p \in V, T(p) w=0$, if $w \neq 0$ then $T(p)=0$ for every p, i.e $T=0$, hence $f(T \otimes w)=0$ implies $T \otimes w=0 \otimes w=$ $T \otimes 0=0$. Since $\operatorname{dim}(\operatorname{Hom}(V, W))=\operatorname{dim}(V) \times \operatorname{dim}(W)$, by the ranknulity theorem f is a bijection. Let $\left\{v_{i}\right\}$ be a basis for V with dual basis $\left\{v_{i}^{*}\right\}$, we set $f^{-1}(T)=\sum v_{i}^{*} \otimes T\left(v_{i}\right)$. We check that f^{-1} is the inverse of $\mathrm{f}:$ $f\left(f^{-1}(T)\right)(p)=f\left(\sum v_{i}^{*} \otimes T\left(v_{i}\right)\right)=\sum f\left(v_{i}^{*} \otimes T\left(v_{i}\right)\right)(p)=\sum v_{i}^{*}(p) T\left(v_{i}\right)=$ $T\left(\sum v_{i}^{*}(p) v_{i}\right)=T(p) \Rightarrow f\left(f^{-1}(T)\right)=T$. Conversely, $f^{-1}(f(T \otimes w))=$ $\sum v_{i}^{*} \otimes f(T \otimes w)\left(v_{i}\right)=\sum v_{i}^{*} \otimes T\left(v_{i}\right) w=\left(\sum T\left(v_{i}\right) v_{i}^{*}\right) \otimes w=T \otimes w$. Since the tensor product is linear in its entries, f^{-1} is linear. Hence, f is an isomorphism.

- Lee's 8.4

Evaluating both sides at $\left(\frac{\partial}{\partial x_{i_{1}}}, \ldots, \frac{\partial}{\partial x_{i_{k}}}\right)$ we get:

$$
\sigma_{i_{1} \ldots i_{k}}=\sum_{J} \bar{\sigma}_{j_{1} \ldots j_{k}} d \bar{x}^{j_{1}}\left(\frac{\partial}{\partial x_{i_{1}}}\right) \otimes \cdots \otimes d \bar{x}^{j_{k}}\left(\frac{\partial}{\partial x_{i_{k}}}\right)=\sum_{J} \bar{\sigma}_{j_{1} \ldots j_{k}} \frac{\partial \bar{x}^{j_{1}}}{\partial x_{i_{1}}} \cdots \frac{\partial \bar{x}^{j_{k}}}{\partial x_{i_{k}}}
$$

- Lee's 8.7

Let $\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$ be a dual basis for V. Then as a vector space, $\Sigma^{k}(V)$ is generated by the collection $\epsilon_{i_{1}} \odot \cdots \odot \epsilon_{i_{k}}$ with $1 \leq \epsilon_{i_{k}} \leq \cdots \leq \epsilon_{i_{k}} \leq$ n (repetitions allowed). The number of such elements is then the number of multisets of length k taken from a set of length n. From combinatorics we know that this is $\binom{n+k-1}{k}$. This is often called informally "stars and bars theorem". To see why this is true, we want to count the number of k-arrangements of stars separated by $n-1$ bars, or we want to choose k elements of a set with $k+(n-1)$ elements.

