
SOLUTIONS

• Lee’s exercise 8.8
(a) F ∗(rσ + τ)p(X1, . . . , Xn) = (rσ + τ)F (p)(F∗(X1), . . . , F∗(Xn)) =

rσF (p)(F∗(X1), . . . , F∗(Xn))+τF (p)(F∗(X1), . . . , F∗(Xn)) = rF ∗σp(X1, . . . , Xn)+
F ∗τp(X1, . . . , Xn)

(b)F ∗(fσ)p(X1, . . . , Xn) = (fσ)F (p)(F∗(X1), . . . , F∗(Xn)) =
f(F (p))σF (p)(F∗(X1), . . . , F∗(Xn)) = (f ◦ F )(p)F ∗σp(X1, . . . , Xn)

(c)F ∗(σ ⊗ τ)p(X1, . . . , Xn) = (σ ⊗ τ)F (p)(F∗(X1), . . . , F∗(Xn)) =
σF (p)(F∗(X1), . . . , F∗(Xn))⊗τF (p)(F∗(X1), . . . , F∗(Xn)) = F ∗σp(X1, . . . , Xn)⊗
F ∗τp(X1, . . . , Xn)

(d)(G◦F )∗ωp(X1, . . . , Xn) = ω(G◦F )(p)((G◦F )∗(X1), . . . , (G◦F )∗(Xn)) =
ωG(F (p))((G∗◦F∗)(X1), . . . , (G∗◦F∗)(Xn)) = (G∗ω)F (p)(F∗(X1), . . . , F∗(Xn)) =
(F ∗(G∗ω))p(X1, . . . , Xn)

(e) Id∗τp(X1, . . . , Xn) = τId(p)(Id∗(X1), . . . , Id∗(Xn)) = τp(X1, . . . , Xn)
• Lee’s exercise 8.9

(a)→ (b) If σ ∈ Sk is any permutation then we claim that T (Xσ(1), . . . , Xσ(k))
is T (X1, . . . , Xk). Indeed, start by exchanging Xσ(1) with X1, since T is
symmetric the value of T remains the same, if we keep doing this until we
reach Xk, the value remains the same.

(b)→ (a) Just take the permutation that send i to j.
(b)→ (c) Let T =

∑
Ti1i2...ikε

i1⊗ . . . εik , then Ti1i2...ik = T (E1, . . . , Ek).
Since T (Eσ(1), . . . , Eσ(k)) = T (E1, . . . , Ek), we have that Ti1...ik = Tσ(i1)σ(i2)...σ(ik).

(c)→ (a) Take σ = (ij), then T (E1, . . . , Ei, . . . , Ej , . . . , Ek) = T (E1, . . . , Ej , . . . , Ei, . . . , Ek),
since T is k-linear we can extend this property for any X =

∑
Ej .

• Lee’s 8.3
Let f : V ∗ ⊗W → Hom(V,W ) be the map f(T ⊗ w)(p) = T (p)w, since

W is a vector space, f is clearly linear. We claim that f is injective, if
f(T ⊗ w) = 0 then for every p ∈ V , T (p)w = 0, if w 6= 0 then T (p) = 0
for every p, i.e T = 0, hence f(T ⊗ w) = 0 implies T ⊗ w = 0 ⊗ w =
T ⊗ 0 = 0. Since dim(Hom(V,W )) = dim(V ) × dim(W ), by the rank-
nulity theorem f is a bijection. Let {vi} be a basis for V with dual basis
{v∗i }, we set f−1(T ) =

∑
v∗i ⊗T (vi). We check that f−1 is the inverse of f:

f(f−1(T ))(p) = f(
∑
v∗i ⊗ T (vi)) =

∑
f(v∗i ⊗ T (vi))(p) =

∑
v∗i (p)T (vi) =

T (
∑
v∗i (p)vi) = T (p) ⇒ f(f−1(T )) = T . Conversely, f−1(f(T ⊗ w)) =∑

v∗i ⊗ f(T ⊗ w)(vi) =
∑
v∗i ⊗ T (vi)w = (

∑
T (vi)v

∗
i )⊗ w = T ⊗ w. Since

the tensor product is linear in its entries, f−1 is linear. Hence, f is an
isomorphism.
• Lee’s 8.4

Evaluating both sides at ( ∂
∂xi1

, . . . , ∂
∂xik

) we get:

σi1...ik =
∑
J

σj1...jkdx
j1(

∂

∂xi1
)⊗ · · · ⊗ dxjk(

∂

∂xik
) =

∑
J

σj1...jk
∂xj1

∂xi1
. . .

∂xjk

∂xik

• Lee’s 8.7
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2 SOLUTIONS

Let {ε1, . . . , εn} be a dual basis for V . Then as a vector space, Σk(V )
is generated by the collection εi1 � · · · � εik with 1 ≤ εik ≤ · · · ≤ εik ≤
n(repetitions allowed). The number of such elements is then the number
of multisets of length k taken from a set of length n. From combinatorics
we know that this is

(
n+k−1

k

)
. This is often called informally ”stars and

bars theorem”. To see why this is true, we want to count the number of
k-arrangements of stars separated by n − 1 bars, or we want to choose k
elements of a set with k + (n− 1) elements.


