## SOLUTIONS

- Lee's 17.1
$(\omega+d a) \wedge(\eta+d b)=\omega \wedge \eta+\omega \wedge d b+d a \wedge \eta+d a \wedge d b=\omega \wedge \eta+(-1)^{k} d(\omega \wedge$ $b)+d(a \wedge \eta)+d(a \wedge d b)$, hence $[\omega \wedge \eta]=[\omega] \wedge[\eta]$
- Lee's 17.6

Let $U$ be a open ball centered at $x$ and $V=M \backslash\{x\}$. Note that $H^{0}(M) \cong H^{0}(V) \cong \mathbb{R}$, since $M, V$ are connected. If $1<p<n-1$, the Mayer-Vietoris sequence for the pair $\{U, V\}$ translates to

$$
H^{p-1}(U \backslash\{x\}) \rightarrow H^{p}(M) \rightarrow H^{p}(U) \oplus H^{p}(V) \rightarrow H^{p}(U \backslash\{x\})
$$

since $H^{p}(U)=0$ for $p>0$ and $H^{p}(U)=H^{p}\left(\mathbb{S}^{n-1}\right)=0$ if $1<p<n-1$, we get that the above sequence is just

$$
0 \rightarrow H^{p}(M) \rightarrow H^{p}(V) \rightarrow 0
$$

hence $H^{p}(M) \cong H^{p}(V)$.
When $p=n-1$ and $M$ compact orientable, we have

$$
0 \rightarrow H^{n-1}(M) \rightarrow H^{n-1}(V) \rightarrow \mathbb{R} \rightarrow \mathbb{R} \rightarrow 0
$$

by counting dimensions we get that $H^{n-1}(M) \cong H^{n-1}(V)$
When $p=0,1$ the sequence reads:

$$
0 \rightarrow \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \rightarrow H^{1}(M) \rightarrow H^{1}(V) \rightarrow 0
$$

by the same reasoning above, $H^{1}(M) \cong H^{1}(V)$.

- Lee's 17.7

Using the notation of Problem 9-12, we have that

$$
H^{p}\left(\widetilde{M}_{i}\right)=H^{p}\left(M_{i} \backslash\left\{p_{i}\right\}\right), i=1,2
$$

moreover, by the previous problem if $0<p<n-1$, then $H^{p}\left(M_{i} \backslash\left\{p_{i}\right\}\right) \cong$ $H^{p}\left(M_{i}\right)$. The Mayer-Vietoris sequence for the pair $\widetilde{M_{1}}, \widetilde{M_{2}}$ reads:

$$
H^{p-1}\left((-1,1) \times \mathbb{S}^{n-1}\right) \rightarrow H^{p}\left(M_{1} \# M_{2}\right) \rightarrow H^{p}\left(M_{1}\right) \oplus H^{p}\left(M_{2}\right) \rightarrow H^{p}\left((-1,1) \times \mathbb{S}^{n-1}\right)
$$

Notice that $(-1,1) \times \mathbb{S}^{n-1}$ has the same homotopy type of $S^{n-1}$, hence $H^{p}\left((-1,1) \times \mathbb{S}^{n-1}\right) \cong H^{p}\left(\mathbb{S}^{n-1}\right)$. Therefore, for $0<p<n-1$, we have $0 \rightarrow H^{p}\left(M_{1} \# M_{2}\right) \rightarrow H^{p}\left(M_{1}\right) \oplus H^{p}\left(M_{2}\right) \rightarrow 0$. When $M_{i}$ are compact and orientable we can use again the previous problem to get:

$$
0 \rightarrow H^{n-1}\left(M_{1} \# M_{2}\right) \rightarrow H^{n-1}\left(M_{1}\right) \oplus H^{n-1}\left(M_{2}\right) \rightarrow \mathbb{R} \rightarrow \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow 0
$$

By counting dimension again we conclude that $H^{n-1}\left(M_{1} \# M_{2}\right) \cong H^{n-1}\left(M_{1}\right) \oplus$ $H^{n-1}\left(M_{2}\right)$

- Lee's 17.8
(a) The correspondence is just $\omega \rightarrow[\omega]$, for every orientation form $\omega$. If $[\omega]$ and $[\eta]$ give the same vector space orientation, then $[\omega]=c[\eta]$ for some positive $c$, in particular $\omega=c \eta$ and $\omega$ and $\eta$ give the same orientation.
(b) Suppose $F^{*}$ preserves orientation, then $F^{*}\left[\omega_{N}\right]=\left[\omega_{M}\right]$, which implies that $F^{*}\left(\omega_{N}+d \eta\right)=\omega_{M}+d \tau$. Taking $\tau=\eta=0$ we have in particular that $F^{*} \omega_{N}=\omega_{M}$, and hence for any oriented form $\alpha=c \omega_{N}$, $F^{*} \alpha$ is oriented, i.e $F$ preserves orientation. Conversely, suppose $F$ preserves orientation, then $F^{*}$ takes oriented forms to oriented forms. We have $F^{*}\left(\omega_{N}+d \eta\right)=F^{*}\left(\omega_{N}\right)+F^{*}(d \eta)=\omega_{M}+d\left(F^{*} \eta\right)$, thus $F^{*}\left[\omega_{N}\right]=\left[\omega_{M}\right]$.

