SOLUTIONS

• Lee's 17.1

 $\begin{array}{l} (\omega + da) \wedge (\eta + db) = \omega \wedge \eta + \omega \wedge db + da \wedge \eta + da \wedge db = \omega \wedge \eta + (-1)^k d(\omega \wedge b) + d(a \wedge \eta) + d(a \wedge db), \text{ hence } [\omega \wedge \eta] = [\omega] \wedge [\eta] \end{array}$

• Lee's 17.6

Let U be a open ball centered at x and $V = M \setminus \{x\}$. Note that $H^0(M) \cong H^0(V) \cong \mathbb{R}$, since M, V are connected. If $1 , the Mayer-Vietoris sequence for the pair <math>\{U, V\}$ translates to

$$H^{p-1}(U \setminus \{x\}) \to H^p(M) \to H^p(U) \oplus H^p(V) \to H^p(U \setminus \{x\})$$

since $H^p(U) = 0$ for p > 0 and $H^p(U) = H^p(\mathbb{S}^{n-1}) = 0$ if 1 ,we get that the above sequence is just

$$0 \to H^p(M) \to H^p(V) \to 0$$

hence $H^p(M) \cong H^p(V)$.

When p = n - 1 and M compact orientable, we have

$$0 \to H^{n-1}(M) \to H^{n-1}(V) \to \mathbb{R} \to \mathbb{R} \to 0$$

by counting dimensions we get that $H^{n-1}(M) \cong H^{n-1}(V)$ When p = 0, 1 the sequence reads:

$$0 \to \mathbb{R} \to \mathbb{R} \oplus \mathbb{R} \to \mathbb{R} \to H^1(M) \to H^1(V) \to 0$$

by the same reasoning above, $H^1(M) \cong H^1(V)$.

• Lee's 17.7

Using the notation of Problem 9-12, we have that

$$H^{p}(M_{i}) = H^{p}(M_{i} \setminus \{p_{i}\}), i = 1, 2$$

moreover, by the previous problem if $0 , then <math>H^p(M_i \setminus \{p_i\}) \cong H^p(M_i)$. The Mayer-Vietoris sequence for the pair $\widetilde{M}_1, \widetilde{M}_2$ reads:

$$H^{p-1}((-1,1) \times \mathbb{S}^{n-1}) \to H^p(M_1 \# M_2) \to H^p(M_1) \oplus H^p(M_2) \to H^p((-1,1) \times \mathbb{S}^{n-1})$$

Notice that $(-1,1) \times \mathbb{S}^{n-1}$ has the same homotopy type of S^{n-1} , hence $H^p((-1,1) \times \mathbb{S}^{n-1}) \cong H^p(\mathbb{S}^{n-1})$. Therefore, for $0 , we have <math>0 \to H^p(M_1 \# M_2) \to H^p(M_1) \oplus H^p(M_2) \to 0$. When M_i are compact and orientable we can use again the previous problem to get:

$$0 \to H^{n-1}(M_1 \# M_2) \to H^{n-1}(M_1) \oplus H^{n-1}(M_2) \to \mathbb{R} \to \mathbb{R} \to \mathbb{R} \oplus \mathbb{R} \to 0$$

By counting dimension again we conclude that $H^{n-1}(M_1 \# M_2) \cong H^{n-1}(M_1) \oplus H^{n-1}(M_2)$

• Lee's 17.8

(a) The correspondence is just $\omega \to [\omega]$, for every orientation form ω . If $[\omega]$ and $[\eta]$ give the same vector space orientation, then $[\omega] = c[\eta]$ for some positive c, in particular $\omega = c\eta$ and ω and η give the same orientation.

SOLUTIONS

(b) Suppose F^* preserves orientation, then $F^*[\omega_N] = [\omega_M]$, which implies that $F^*(\omega_N + d\eta) = \omega_M + d\tau$. Taking $\tau = \eta = 0$ we have in particular that $F^*\omega_N = \omega_M$, and hence for any oriented form $\alpha = c\omega_N$, $F^*\alpha$ is oriented, i.e. F preserves orientation. Conversely, suppose F preserves orientation, then F^* takes oriented forms to oriented forms. We have $F^*(\omega_N + d\eta) = F^*(\omega_N) + F^*(d\eta) = \omega_M + d(F^*\eta)$, thus $F^*[\omega_N] = [\omega_M]$.