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Introduction

In this presentation I will address three results concerning the limiting
behavior of variations of Hodge structures. The first result discuss
extensions classes representing LMHS, I will compute them for a
certain class of toric families. The next result is concerned with the
so called Apéry constants, I will provide a method of computing such
constants by using higher normal functions coming from geometry.
Finally, in the last result I will analyze a family of surfaces with
geometric monodromy group G2.



Mirror symmetry and CY-variations of Hodge structures

Until recently, toric mirror symmetry only identified complex vari-
ations of Hodge structure arising from the A-model and B-model,
because the Dubrovin connection on quantum cohomology merely
provides a C-local system on the A-model side. Iritani’s mirror theo-
rem says that the integral structure on this local system provided by
the Γ̂-class (in the sense I will describe soon) completes the A-model
C-VHS to a Z-VHS matching the one arising from H3 of fibers on
the B-model side. The upshot is that to compute Ωlim (at 0) for
a 1-parameter family of toric complete intersection Calabi-Yau 3-
folds Xt ⊂ P∆ over P1\{0, 1,∞}, we may use what boils down to
characteristic class data from the mirror X ◦t ⊂ P∆◦ .



Mirror symmetry and CY-variations of Hodge structures

In each case:

I V := Heven(X ◦,C) = ⊕3
j=0H

j ,j(X ◦) is a vector space of rank
4.

I P := P∆◦ = WP(δ0, . . . , δ3+r ) is a weighted projective space
(with δ0 = δ1 = 1).

I X ◦ ⊂ P is smooth of multidegree (dk)rk=1 with
∑

dk =
=
∑
δi =: m.

I H denotes the intersection with X ◦ of the vanishing locus of
the coordinate X0.

I τ [H] ∈ H1,1(X ◦) denotes the Kähler class

I q = e2πiτ for the Kähler parameter

We shall give a general recipe (following Doran-Kerr) for construct-
ing a polarized Z-VHS, over ∆∗ : 0 < |q| < ε, on V := V ⊗O∆∗ .



Mirror symmetry and CY-variations of Hodge structures
The easy parts are the Hodge filtration and polarization. Indeed, we
simply put:
I F p := ⊕j≤3−pH

j ,j ⊂ V
I Fp

e := F p ⊗O∆ ⊂ V ⊗O∆ =: Ve .
I Q on Ve is induced from the form on V given by the direct

sum of pairings

Qj : H j ,j × H3−j ,3−j → C

defined by Qj(α, β) := (−1)j
∫
X◦ α ∪ β.

A Hodge basis e = {ei}3
i=0 of Heven, with ei ∈ H3−i ,3−i (X ◦) and

[Q]e of the form (1), is given by e3 = [X ◦], e2 = [H], e1 = −[L],
and e0 = [p]. Here L is a copy of P1 (parametrized by [X0 : X1]) in
X ◦ with L · H = p, and [H] · [H] = m[L]. The {ei} give a Hodge
basis for Ve .

Q =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (1)



Mirror symmetry and CY-variations of Hodge structures

For the local system, we consider the generating series

Φh(q) :=
1

(2πi)3

∑
d≥1

Ndq
d

of the genus-zero Gromov-Witten invariants of X ◦, and define the
small quantum product on V by

I e2 ∗ e2 := −(m + Φ′′′h (q))e1

I ei ∗ ej := ei ∪ ej , (i , j) 6= (2, 2)

This gives rise to the Dubrovin connection

∇ := idV ⊗ d + (e2∗)⊗ dτ,

which we view as a map from V ∼= V ⊗O∆∗ → V ⊗Ω1
∆∗
∼= V⊗Ω1

∆∗ ,
and the C-local system VC := ker(∇) ⊂ V.



Mirror symmetry and CY-variations of Hodge structures

Now define a map σ̃ : V → V ⊗O(∆) by

σ̃(e0) := e0, σ̃(e1) := e1, σ̃(e2) := e2 + Φ′′he1 + Φ′he0,

σ̃(e3) := e3 + Φ′he1 + 2Φhe0.

For any α ∈ V , one easily checks that

σ(α) := σ̃
(
e−τ [H] ∪ α

)
:=
∑
k≥0

(−1)kτk

k!
σ̃
(

[H]k ∪ α
)

satisfies∇σ(α) = 0, hence yields an isomorphism σ : V
∼=→ Γ(H, ρ∗VC)

(where ρ : H→ ∆∗ sends τ 7→ q).



Mirror symmetry and CY-variations of Hodge structures

Writing

Γ̂(X ◦) := exp

(
− 1

24
ch2(X ◦)− 2ζ(3)

(2πi)3
ch3(X ◦)

)
∈ V ,

The image of

γ : Knum
0 (X ◦) −→ Γ(H, ρ∗VC)

ξ 7→ σ(Γ̂(X ◦) ∪ ch(ξ))

defines Iritani’s Z-local system V underlying VC.
The filtration W• := W (N)• associated to its monodromy T (γ(ξ)) =
γ(O(−H)⊗ ξ) satisfies WkVe =

(
⊕j≥3−k/2H

j ,j
)
⊗O∆.



Mirror symmetry and CY-variations of Hodge structures
In order to compute the limiting period matrix(following GGK) of
this Z-VHS over ∆∗, we shall require a (multivalued) basis {γi}3

i=0

of V satisfying:
I γi ∈W2i ∩ V
I γi ≡ ei mod W2i−2

I [Q]γ = [Q]e

Set Ṽ = j∗(e
log(s)

2πi
NV), where ∆∗

j
⊂ ∆. The corresponding Q-basis

of Ṽ|q=0 =: Vlim is given by γ limi := γ̃i (0) where γ̃i := e−τNγi ∈
Γ(∆, Ṽ). Of course, the ei are another basis of Vlim,C, and

Ωlim = γ lim [id]e

Since Nlim = −(2πi)Resq=0(∇) = −(e2∗)|q=0 = −(e2∪)|q=0, we
have

[Nlim]e =


0 0 0 0
−1 0 0 0
0 m 0 0
0 0 1 0


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A basis of the form we require is obtained by considering the Mukai
pairing

〈ξ, ξ′〉 :=

∫
X◦

ch(ξ∨ ⊗ ξ′) ∪ Td(X ◦)

on Knum
0 (X ◦). Since 〈ξ, ξ′〉 = Q(γ(ξ), γ(ξ′)), any Mukai-symplectic

basis of Knum
0 (X ◦) of the form

ξ1 = O + AOH + BOL + COp

ξ2 = OH + DOL + EOp

ξ3 = −OL + FOp

ξ4 = Op

(2)

will produce γi := γ(ξi ) satisfying the above hypotheses.



Mirror symmetry and CY-variations of Hodge structures
In this case, taking

σ∞(α) := lim
q→0

σ̃(α), γ∞(ξ) := σ∞

(
Γ̂(X ◦) ∪ ch(ξ)

)
,

we have γ limi = γ∞(ξi ).
We now run this computation. Let c(X ◦) = 1 + a[L] + b[p] be the
Chern class of X ◦. The Chern character is ch(X ◦) = 3−a[L] + b

2 [p]

and the Todd class is Td(X ◦) = 1 + a
12 [L], Γ̂(X ◦) = 1 + a

24 [L] −
bζ(3)
(2πi)3 [p]. This yields:

γ lim3 = e3 + Ae2 +
(
−B +

m

2
A− a

24

)
e1 +

(
C − B +

4m + a

24
A− b

ζ(3)

(2πi)3

)
e0

γ lim2 = e2 +
(
−D +

m

2

)
e1 +

(
E − D +

4m + a

24

)
e0

γ lim1 = e1 + (F + 1)e0

γ lim0 = e0
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Imposing the symplectic condition produces:

Ωlim =


1 0 0 0
0 1 0 0
a

24 −m
2 1 0

bζ(3)
(2πi)3

a
24 0 1

 . (3)

To compute N (with these normalizations), we apply O(−H)⊗ to
the ξi in Knum

0 (X ◦); then

[T ]γ = [O(−H)⊗]ξ =


1 0 0 0
−1 1 0 0
0 m 1 0

−a+2m
12 m 1 1

 ,

whereupon taking log gives

[Nlim]γ lim = [N]γ =


0 0 0 0
−1 0 0 0
m
2 m 0 0
− a

12
m
2 −1 0

 .



Mirror symmetry and CY-variations of Hodge structures
The data required to compute N and Ωlim for the complete intersec-
tion Calabi-Yau (CICY) examples from Doran-Morgan is displayed
in the table:

X ◦ m a b

P4[5] 5 50 -200

P5[2, 4] 8 56 -176

P5[3, 3] 9 54 -144

P6[2, 2, 3] 12 60 -144

P7[2, 2, 2, 2] 8 64 -128

WP4
1,1,1,2,5[10] 10 340 -2880

WP4
1,1,1,1,4[8] 8 176 -1184

WP5
1,1,2,2,3,3[6, 6] 36 792 -4320

WP5
1,1,1,2,2,3[4, 6] 24 384 -1872

WP4
1,1,1,1,2[6] 6 84 -408

WP5
1,1,1,1,1,3[2, 6] 12 156 -768

WP5
1,1,1,1,2,2[4, 4] 16 160 -576

WP5
1,1,1,1,1,2[3, 4] 12 96 -312

Table: LMHS parameters



The Arithmetic of the LG model of a certain class of
threefolds

Next we turn our attention to the next result. The goal will be
to use normal functions to give a ‘motivic’ meaning to constants
arising in quantum differential equations associated to a certain
class of Landau-Ginzburg models. Henceforward we will be mainly
concerned with the Landau-Ginzburg models for a special class of
threefolds, namely the ones whose associated local system is of rank
three, with a single nontrivial involution exchanging two maximally
unipotent monodromy points. More precisely, we will work with the
varieties V12,V16,V18 and “R1”, where the first three are rank 1
Fanos appearing in the work of Golyshev and the latter is a rank 4
threefold with −K 3 = 24 (K the canonical divisor). The involutions
for these LG models have essentially been described by Golyshev.
In the presence of an involution, it is possible to move the degen-
eracy locus of a higher cycle from the fiber over 0 to its involute,
a property which we use for the construction of the desired normal
function.



The Arithmetic of the LG model of a certain class of
threefolds

Definition (GOLYSHEV-2009)

Given a linear homogeneous recurrence R and two solutions
an, bn ∈ Q with a0 = 1, b0 = 0, b1 = 1, if there is a L-function L(x)
and c ∈ Q∗ such that:

lim
bn
an

= cL(x0) (4)

We say that yhe limit above is the Apéry constant of R.

Golyshev uses quantum recurrences of the threefolds V10,V12,V14,
V16,V18 to find Apéry constants; his method is basically to use a
result of Beukers for the rational cases and apply a different approach
for the non-rational ones. In the course of the proof of his results,
he also describes the involution we mentioned above.



The Arithmetic of the LG model of a certain class of
threefolds

We will prove the following:

Theorem

Let X be a Fano threefold, in the special class described above.
Then there is a higher normal function N , arising from a family of
motivic cohomology classes on the fibers of the LG model, such
that the Apéry constant is equal to N (0).

We need this definition first:

Definition

For Xt a general K3 surface of the family induced by a Minkowski
polynomial φ, let X ∗t = Xt ∩ (C∗)3; then φ is tempered if the
image of the higher Chow cycle ξt := 〈x , y , z〉X∗

t
∈ CH3(X ∗t , 3)

under all residue maps vanishes.



The Arithmetic of the LG model of a certain class of
threefolds

Let X be one of the threefolds V12,V16,V18,R1. Associated to X is
a Newton polytope ∆, and to the latter we associate a Minkowski
polynomial φ. We have that φ is tempered, and the family of higher
Chow cycles lifts to a class [Ξ] ∈ CH3(X ◦, 3), yielding by restriction
a family of motivic cohomology classes [Ξt ] ∈ H3

M(Xt ,Q(3)) on the
Landau-Ginzburg model. The local system V = R2

trπ∗Z associated
to the Landau-Ginzburg model of X has the following singular points:

I V12 : t = 0, 17± 12
√

2,∞
I V16 : t = 0, 12± 8

√
2,∞

I V18 : t = 0, 9± 6
√

3,∞
I R1 : t = 0, 4, 16,∞



The Arithmetic of the LG model of a certain class of
threefolds

In each case, we have an involution ι(t) = M
t , (M = 1, 1

16 ,
−1
27 , 64),

exchanging say t1 and t2 with 0 < |t1| < |t2| <∞. The involution ι
gives then a correspondence I ∈ Z 2(X × ι∗X ) which gives a rational
isomorphism between V and ι∗V.
Now let Ξ̃ := I ∗Ξ ∈ H3

M(X◦,Q(3)) be the pullback of the cycle,
with fiberwise slices Ξ̃t . If AJ is the Abel-Jacobi map as above, then

AJ3,3([Ξ̃t ]) ∈ H2(Xt ,C/Q(3)). (5)

Taking Rt to be any lift of this class to H2(Xt ,C), and letting

ωt = 1
(2πi)2ResXt

( dx1
x1
∧ dx2

x2
∧ dx3

x3
1−tφ

)
; we may define a normal function

by:
N (t) := 〈Rt , ωt〉 (6)



The Arithmetic of the LG model of a certain class of
threefolds

We have that:
DPF (N (t)) = kt, k ∈ Q∗. (7)

If A(t) =
∑

ant
n is the period sequence, then B(t) =

∑
bnt

n =
−N (t) + A(t)N (0) is another solution for the Picard-Fuchs equa-
tion, so that

N (t) =
∑

(anN (0)− bn)tn.

Since the radii of convergence for the generating series of an and bn
are both |t1| < |t2|, while that of anN (0)−bn is |t2|, it follows that
bn
an
→ N (0), which finishes the proof of the theorem.



The Arithmetic of the LG model of a certain class of
threefolds

As a corollary we have:

Corollary

N (0) is (up to Q(3)) a multiple of ζ(3).

The proof is a direct consequence of the following commutative
diagram (After the work of Kerr-Lewis):

H3
M(X0,Q(3))

∼=−−−−→ K ind
5 (Q)yAJ3,3

yrb

J3,3(X0) −−−−→∼=
C

Q(3)

(8)

Where the lower isomorphism is the pairing with ω0 and rb is the
Borel regulator. The Abel-Jacobi map then reduces to the Borel
regulator and by Borel’s theorem it has to be multiple of ζ(3).



Surfaces with exceptional monodromy

There have been several constructions of family of varieties with
exceptional monodromy group( Dettweiler-Reiter, Yun). In most
cases, these constructions give Hodge structures with high weight.
Nicholas Katz was the first to obtain Hodge structures with low
weight( Hodge numbers not spread out) and geometric monodromy
group G2. In last part of this presentation I will describe Katz’s con-
struction and give a geometric proof that the geometric monodromy
group of the family constructed by him is G2.



Surfaces with exceptional monodromy
In his work, Katz describes 4 families, 3 of which have G2 as ge-
ometric monodromy group. For the sake of simplicity, I will work
with one of the 3 families, but the exact same approach applies to
the remaining two in which G2 occurs.
Let E → P1 : y2 = x(x − 1)(x − z2) be a rational elliptic surface
with singular fibers at z = −1, 0, 1,∞. For t 6= 0,± 2

3
√

3
,∞, take a

base change by:

Et → P1 : w2 = tz(z − 1)(z + 1) + t2 (9)

The result is a family of elliptic surfaces Xt → Et with 7 singular
fibers on each surface, as described below:

X ←↩ Xt

↓ π ↓ πt
E ←↩ Et

↓ ↓
P1 ←↩ {t}

(10)



Surfaces with exceptional monodromy

Proposition

For each Xt we have dim(H2
tr (Xt)) = 7.

We now describe a particular choice of 7-dimensional basis of 2-
cycles that we will use henceforward. First, consider the 1-cycles
α, β, γ−1, γ0, γ1 over each Et , as described in figure 1. Denote by
δ1, δ2 the basis for the local system over each point of Et , with
δ1· δ2 = 1.



Surfaces with exceptional monodromy

Figure: 1-cycles over the Base Et



Surfaces with exceptional monodromy

The local monodromies around −1, 0, 1 for the family E → P1 :
y2 = x(x − 1)(x − z2) are:

˜T−1 =
(−3 8
−2 5

)
T̃0 = ( 1 4

0 1 )

T̃1 =
(

1 0
−2 1

) (11)

The vanishing cyle at each singular point is then:

I 2δ1 + δ2 at -1

I δ1 at 0

I δ2 at 1



Surfaces with exceptional monodromy

Figure: Cycles enclosing -1,0 and 1 in P1 minus the cuts.



Surfaces with exceptional monodromy

Set η1 = δ2 and η2 = 2δ1 + δ2, so η1· η2 = −2 and the vanishing
cycle at 0 is precisely 1

2 (η1 +η2). We use henceforward the notation
a × b to denote the 2-cycle on Xt obtained by taking the 1-cycle a
on a fiber of πt and continuing it along the 1-cycle b.



Surfaces with exceptional monodromy

Now that our notation is stablished we procced with the definition
of our 7-dimensional basis of H2

tr (Xt):

A1 = η1 × α C−1 = η2 × γ−1

A2 = η2 × α C0 =
1

2
(η1 + η2)× γ0

B1 = η1 × β C1 = η1 × γ1

B2 = η2 × β

(12)



Surfaces with exceptional monodromy

Note that, A1,A2,B1,B2 are trivially transcendental, the same is
not true for the Ci . The reason is that the Ci may–in fact they
do–contain algebraic cycles resulting from classes of singular fibers.
To overcome this, we have to “add” enough cycles in order to make
all Ci transcendental.
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Figure: The 2-cycle C−1



Surfaces with exceptional monodromy

Now, we eliminate the algebraic components of C−1. Set:

C̃−1 := C−1 + aD− + bD+ + cE− + dE+ (13)

After imposing the transcendency conditions we get:

C̃−1 = C−1 +
1

2
D− +−1

2
E− (14)

By following the exact same reasoning, we deduce that:

C̃1 = C1 +
1

2
G− +−1

2
H− (15)

where G− and H− are the components of the singular fibers of the
endpoints.



Surfaces with exceptional monodromy

Now we address C0, consider the figure 4. Following the idea above,
we set:

C̃0 = C0 + aL1 + bL2 + cL3 − dF1 − eF2 − fF3 (16)

We again solve the system of equations required for transcendency
to obtain:

C̃0 = C0 +
3

4
L1 +

1

2
L2 +

1

4
L3 −

3

4
F1 −

1

2
F2 −

1

4
F3 (17)
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Figure: The 2-cycle C0



Surfaces with exceptional monodromy

Denote by V the space generated by the transcendental cycles (A1,A2,

B1,B2, C̃−1, C̃0, C̃1). The intersection matrix is:

Q =



0 0 0 2 0 0 0
0 0 −2 0 0 0 0
0 −2 0 0 0 0 0
2 0 0 0 0 0 0
0 0 0 0 −1 1 2
0 0 0 0 1 −1/2 −1
0 0 0 0 −2 −1 −1


We now compute the monodromies matrices at the singular points
t− := −2

3
√

3
, 0, t+ := 2

3
√

3
,∞, restricted to the vector space V .
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Figure: The 1-cycles α and β over the Elliptic curve Et
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Figure: The 1-cycles γ−1,γ0 and γ1 over the Elliptic curve Et .
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Figure: The 1-cycles over the Elliptic curve Et
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When t → t±, we have a nodal degeneration on Et . It’s straight-
forward to conclude that in this case, the C̃i remain unchanged.
Moreover, the Ai ,Bi change according to the Picard-Lefschetz for-
mula, hence:

M+ =



1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,M− =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


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The situation when t → 0 is more subtle. If one looks at figure 7,
the endpoints of the cuts behave roughly as −1 − t

2 , t and 1 − t
2 ,

therefore when t go through a path around 0, the endpoints will
certain move, but this time not in a nice way as they did in the case
above, they will instead make the γi cycles cross each other and also
α and β.
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This is the α after we apply monodromy:

Figure: α̃, the resulting cycle after monodromy
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This is the γ0 after we apply monodromy:

Figure: γ̃0, the resulting cycle after monodromy
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Using the expression for the local monodromies, we arrive at:

M0 =



1 2 −2 −2 2 −1 −2
−2 −3 6 2 −4 3 6
2 6 −3 −2 6 −3 −4
−2 −2 2 1 −2 1 2
0 0 −4 0 1 −2 −4
−4 −4 4 4 −4 1 4
0 −4 0 0 −4 2 1


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Since we can rearrange the loops around t−, 0, t+,∞ so that their
product is the identity, we naturally get the expression for M∞ as
the inverse of the prodcut M−·M0·M+, leading to:

M∞ =



0 −4 1 0 −4 2 2
4 0 4 1 −2 2 4
−1 4 −3 −2 6 −3 −4
0 −1 2 1 −2 1 2
−4 0 −4 0 1 −2 −4
0 0 4 4 −4 1 4
0 −4 0 0 −4 2 1


We can easily check that M−,M+,M0,M∞ preserve the intersection
form Q, hence the subgroup Γ ⊂ GL(7) they generate is in fact inside
SO(3, 4).
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We now describe the logarithm of the Mi . A quick computation
shows that M0 is semi-simple, hence the unipotent part of M0 is the
identity, so N0 = 0. The remaining monodromies do have non trivial
logarithms: M+,M− are actually unipotent and M∞ is the only non-
unipotent. We can easily check that M3

∞ is unipotent though. If
M∞ = Ms ·Mu is the Jordan-Chevalley decomposition and I is the
7x7 identity matrix, then:

N+ = M+ − I

N− = M− − I

N∞ := log(Mu) =
1

3
log(M3

∞)

(18)



Surfaces with exceptional monodromy

We have the following theorem:

Theorem

The log-monodromies N+,N−,N∞ generate g2, therefore the
geometric monodromy group for the Katz family is G2.

Proof: Consider the elements:

Y1 = [N−,N+] Y8 = [Y5,Y6]

Y2 = [N−,N∞] Y9 = [N∞,Y5]

Y3 = [N+,N∞] Y10 = [N∞,Y9]

Y4 = [Y1,Y2] Y11 = [N∞,Y10]

Y5 = [Y1,Y3] Y12 = [N+,Y11]

Y6 = [Y2,Y3] Y13 = [N∞,Y12]

Y7 = [Y2,Y6] Y14 = [N−,Y13]

(19)



Surfaces with exceptional monodromy
A quick computation shows that the elements N−,N+,Y1,Y4,Y5,Y6,
Y7,Y8,Y9,Y10,Y11,Y12,Y13,Y14 are linearly independent over Q.
Now define t1 := Y1 and t2 := [Y4,Y5], a direct computation gives
us that [t1, t2] = 0, moreover they both are diagonalizable. Let ad(.)
denotes the adjoint representation, if we act through ad(ti ), i = 1, 2,
on g, we get 14 linearly independent (simultaneous for t1, t2) eigen-
vectors with 1-dimensional eigenspaces, moreover we have:

I 1 with eigenvalue -2

I 4 with eigenvalue -1

I 4 with eigenvalue 0

I 4 with eigenvalue 1

I 1 with eigenvalue 2

Which are in 1-1 correspondence with the roots of g2, therefore
h := 〈t1, t2〉 is a Cartan subalgebra and g = g2.

�



Thanks!


