On the limiting behavior of variations of Hodge structures

Genival Da Silva Jr.

Washington University in St. Louis April 11th, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

In this presentation I will address three results concerning the limiting behavior of variations of Hodge structures. The first result discuss extensions classes representing LMHS, I will compute them for a certain class of toric families. The next result is concerned with the so called Apéry constants, I will provide a method of computing such constants by using higher normal functions coming from geometry. Finally, in the last result I will analyze a family of surfaces with geometric monodromy group G_2 .

Until recently, toric mirror symmetry only identified complex variations of Hodge structure arising from the A-model and B-model, because the Dubrovin connection on quantum cohomology merely provides a C-local system on the A-model side. Iritani's mirror theorem says that the integral structure on this local system provided by the $\hat{\Gamma}$ -class (in the sense I will describe soon) completes the A-model \mathbb{C} -VHS to a \mathbb{Z} -VHS matching the one arising from H^3 of fibers on the B-model side. The upshot is that to compute Ω_{lim} (at 0) for a 1-parameter family of toric complete intersection Calabi-Yau 3folds $X_t \subset \mathbb{P}_{\Delta}$ over $\mathbb{P}^1 \setminus \{0, 1, \infty\}$, we may use what boils down to characteristic class data from the mirror $X_t^{\circ} \subset \mathbb{P}_{\Delta^{\circ}}$.

In each case:

- ► $V := H^{even}(X^{\circ}, \mathbb{C}) = \bigoplus_{j=0}^{3} H^{j,j}(X^{\circ})$ is a vector space of rank 4.
- ▶ $\mathbb{P} := \mathbb{P}_{\Delta^{\circ}} = \mathbb{WP}(\delta_0, \dots, \delta_{3+r})$ is a weighted projective space (with $\delta_0 = \delta_1 = 1$).
- ► $X^{\circ} \subset \mathbb{P}$ is smooth of multidegree $(d_k)_{k=1}^r$ with $\sum d_k = \sum \delta_i =: m$.
- ► H denotes the intersection with X° of the vanishing locus of the coordinate X₀.
- $\tau[H] \in H^{1,1}(X^{\circ})$ denotes the Kähler class
- $q = e^{2\pi i \tau}$ for the Kähler parameter

We shall give a general recipe (following Doran-Kerr) for constructing a polarized \mathbb{Z} -VHS, over Δ^* : $0 < |q| < \epsilon$, on $\mathcal{V} := V \otimes \mathcal{O}_{\Delta^*}$.

The easy parts are the Hodge filtration and polarization. Indeed, we simply put:

$$\blacktriangleright F^p := \oplus_{j \leq 3-p} H^{j,j} \subset V$$

$$\blacktriangleright \ \mathcal{F}_e^p := F^p \otimes \mathcal{O}_\Delta \subset V \otimes \mathcal{O}_\Delta =: \mathcal{V}_e.$$

▶ Q on V_e is induced from the form on V given by the direct sum of pairings

$$Q_j: H^{j,j} imes H^{3-j,3-j} o \mathbb{C}$$

defined by $Q_j(\alpha,\beta) := (-1)^j \int_{X^\circ} \alpha \cup \beta$.

A Hodge basis $e = \{e_i\}_{i=0}^3$ of H^{even} , with $e_i \in H^{3-i,3-i}(X^\circ)$ and $[Q]_e$ of the form (1), is given by $e_3 = [X^\circ]$, $e_2 = [H]$, $e_1 = -[L]$, and $e_0 = [p]$. Here *L* is a copy of \mathbb{P}^1 (parametrized by $[X_0 : X_1]$) in X° with $L \cdot H = p$, and $[H] \cdot [H] = m[L]$. The $\{e_i\}$ give a Hodge basis for \mathcal{V}_e .

$$Q = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$
(1)

For the local system, we consider the generating series

$$\Phi_h(q) := \frac{1}{(2\pi i)^3} \sum_{d \ge 1} N_d q^d$$

of the genus-zero Gromov-Witten invariants of X° , and define the small quantum product on V by

• $e_2 * e_2 := -(m + \Phi_h''(q))e_1$ • $e_i * e_j := e_i \cup e_j, \quad (i,j) \neq (2,2)$

This gives rise to the Dubrovin connection

$$\nabla := \mathsf{id}_V \otimes d + (e_2 *) \otimes d\tau,$$

which we view as a map from $\mathcal{V} \cong \mathcal{V} \otimes \mathcal{O}_{\Delta^*} \to \mathcal{V} \otimes \Omega^1_{\Delta^*} \cong \mathcal{V} \otimes \Omega^1_{\Delta^*}$, and the \mathbb{C} -local system $\mathbb{V}_{\mathbb{C}} := \ker(\nabla) \subset \mathcal{V}$.

Now define a map $\tilde{\sigma}: V \to V \otimes \mathcal{O}(\Delta)$ by

$$\begin{split} \tilde{\sigma}(e_0) &:= e_0, \; \tilde{\sigma}(e_1) := e_1, \; \tilde{\sigma}(e_2) := e_2 + \Phi_h'' e_1 + \Phi_h' e_0, \ &\\ &\tilde{\sigma}(e_3) := e_3 + \Phi_h' e_1 + 2 \Phi_h e_0. \end{split}$$

For any $\alpha \in V$, one easily checks that

$$\sigma(\alpha) := \tilde{\sigma}\left(e^{-\tau[H]} \cup \alpha\right) := \sum_{k \ge 0} \frac{(-1)^k \tau^k}{k!} \tilde{\sigma}\left([H]^k \cup \alpha\right)$$

satisfies $\nabla \sigma(\alpha) = 0$, hence yields an isomorphism $\sigma : V \xrightarrow{\cong} \Gamma(\mathfrak{H}, \rho^* \mathbb{V}_{\mathbb{C}})$ (where $\rho : \mathfrak{H} \to \Delta^*$ sends $\tau \mapsto q$).

Writing

$$\widehat{\Gamma}(X^{\circ}) := \exp\left(-\frac{1}{24}ch_2(X^{\circ}) - \frac{2\zeta(3)}{(2\pi i)^3}ch_3(X^{\circ})\right) \in V,$$

The image of

$$\begin{array}{rcl} \gamma : & \mathcal{K}_0^{num}(X^\circ) & \longrightarrow & \Gamma(\mathfrak{H}, \rho^* \mathbb{V}_{\mathbb{C}}) \\ & \xi & \mapsto & \sigma(\widehat{\Gamma}(X^\circ) \cup ch(\xi)) \end{array}$$

defines Iritani's \mathbb{Z} -local system \mathbb{V} underlying $\mathbb{V}_{\mathbb{C}}$. The filtration $W_{\bullet} := W(N)_{\bullet}$ associated to its monodromy $T(\gamma(\xi)) = \gamma(\mathcal{O}(-H) \otimes \xi)$ satisfies $W_k \mathcal{V}_e = (\bigoplus_{j \ge 3-k/2} H^{j,j}) \otimes \mathcal{O}_{\Delta}$.

In order to compute the limiting period matrix(following GGK) of this \mathbb{Z} -VHS over Δ^* , we shall require a (multivalued) basis $\{\gamma_i\}_{i=0}^3$ of \mathbb{V} satisfying:

$$\blacktriangleright \ \gamma_i \in W_{2i} \cap \mathbb{V}$$

$$\blacktriangleright \ \gamma_i \equiv e_i \ \mathrm{mod} \ W_{2i-2}$$

•
$$[Q]_{\gamma} = [Q]_{\epsilon}$$

Set $\tilde{\mathbb{V}} = j_*(e^{\frac{\log(s)}{2\pi i}N}\mathbb{V})$, where $\Delta^* \subset \Delta$. The corresponding \mathbb{Q} -basis of $\tilde{\mathbb{V}}|_{q=0} =: V_{lim}$ is given by $\gamma_i^{lim} := \tilde{\gamma}_i(0)$ where $\tilde{\gamma}_i := e^{-\tau N}\gamma_i \in \Gamma(\Delta, \tilde{\mathbb{V}})$. Of course, the e_i are another basis of $V_{lim,\mathbb{C}}$, and

$$\Omega_{lim} = {}_{\gamma^{lim}} [id]_{\epsilon}$$

Since $N_{lim} = -(2\pi i)Res_{q=0}(\nabla) = -(e_2*)|_{q=0} = -(e_2\cup)|_{q=0}$, we have

$$[N_{lim}]_e = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

A basis of the form we require is obtained by considering the Mukai pairing

$$\langle \xi, \xi'
angle := \int_{X^\circ} ch(\xi^{ee} \otimes \xi') \cup Td(X^\circ)$$

on $K_0^{num}(X^\circ)$. Since $\langle \xi, \xi' \rangle = Q(\gamma(\xi), \gamma(\xi'))$, any Mukai-symplectic basis of $K_0^{num}(X^\circ)$ of the form

$$\xi_{1} = \mathcal{O} + A\mathcal{O}_{H} + B\mathcal{O}_{L} + C\mathcal{O}_{p}$$

$$\xi_{2} = \mathcal{O}_{H} + D\mathcal{O}_{L} + E\mathcal{O}_{p}$$

$$\xi_{3} = -\mathcal{O}_{L} + F\mathcal{O}_{p}$$

$$\xi_{4} = \mathcal{O}_{p}$$
(2)

will produce $\gamma_i := \gamma(\xi_i)$ satisfying the above hypotheses.

Mirror symmetry and CY-variations of Hodge structures In this case, taking

$$\sigma_{\infty}(\alpha) := \lim_{q \to 0} \tilde{\sigma}(\alpha), \quad \gamma_{\infty}(\xi) := \sigma_{\infty}\left(\hat{\Gamma}(X^{\circ}) \cup ch(\xi)\right),$$

we have $\gamma_i^{lim} = \gamma_{\infty}(\xi_i)$. We now run this computation. Let $c(X^{\circ}) = 1 + a[L] + b[p]$ be the Chern class of X° . The Chern character is $ch(X^{\circ}) = 3 - a[L] + \frac{b}{2}[p]$ and the Todd class is $Td(X^{\circ}) = 1 + \frac{a}{12}[L]$, $\hat{\Gamma}(X^{\circ}) = 1 + \frac{a}{24}[L] - \frac{b\zeta(3)}{(2\pi i)^3}[p]$. This yields:

$$\begin{split} \gamma_3^{lim} &= e_3 + Ae_2 + \left(-B + \frac{m}{2}A - \frac{a}{24}\right)e_1 + \left(C - B + \frac{4m + a}{24}A - b\frac{\zeta(3)}{(2\pi i)}\right)\\ \gamma_2^{lim} &= e_2 + \left(-D + \frac{m}{2}\right)e_1 + \left(E - D + \frac{4m + a}{24}\right)e_0\\ \gamma_1^{lim} &= e_1 + (F + 1)e_0\\ \gamma_0^{lim} &= e_0 \end{split}$$

Imposing the symplectic condition produces:

$$\Omega_{lim} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{a}{24} & -\frac{m}{2} & 1 & 0 \\ \frac{b\zeta(3)}{(2\pi i)^3} & \frac{a}{24} & 0 & 1 \end{pmatrix}.$$
 (3)

To compute N (with these normalizations), we apply $\mathcal{O}(-H)\otimes$ to the ξ_i in $K_0^{num}(X^\circ)$; then

$$[T]_{\gamma} = [\mathcal{O}(-H)\otimes]_{\xi} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & m & 1 & 0 \\ -\frac{a+2m}{12} & m & 1 & 1 \end{pmatrix},$$

whereupon taking log gives

$$[N_{lim}]_{\gamma^{lim}} = [N]_{\gamma} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ \frac{m}{2} & m & 0 & 0 \\ -\frac{a}{12} & \frac{m}{2} & -1 & 0 \end{pmatrix} .$$

The data required to compute N and Ω_{lim} for the complete intersection Calabi-Yau (CICY) examples from Doran-Morgan is displayed in the table:

X°	m	а	b
$\mathbb{P}^{4}[5]$	5	50	-200
$\mathbb{P}^{5}[2,4]$	8	56	-176
$\mathbb{P}^{5}[3,3]$	9	54	-144
$\mathbb{P}^{6}[2,2,3]$	12	60	-144
$\mathbb{P}^{7}[2,2,2,2]$	8	64	-128
$\mathbb{WP}^{4}_{1,1,1,2,5}[10]$	10	340	-2880
$\mathbb{WP}^{4}_{1,1,1,1,4}[8]$	8	176	-1184
$\mathbb{WP}^{5}_{1,1,2,2,3,3}[6,6]$	36	792	-4320
$\mathbb{WP}^{5}_{1,1,1,2,2,3}[4,6]$	24	384	-1872
$\mathbb{WP}^{4}_{1,1,1,1,2}[6]$	6	84	-408
$\mathbb{WP}^{5}_{1,1,1,1,3}[2,6]$	12	156	-768
$\mathbb{WP}^{5}_{1,1,1,1,2,2}[4,4]$	16	160	-576
$\mathbb{WP}_{1,1,1,1,2}^{5}[3,4]$	12	96	-312

= 900

Next we turn our attention to the next result. The goal will be to use normal functions to give a 'motivic' meaning to constants arising in quantum differential equations associated to a certain class of Landau-Ginzburg models. Henceforward we will be mainly concerned with the Landau-Ginzburg models for a special class of threefolds, namely the ones whose associated local system is of rank three, with a single nontrivial involution exchanging two maximally unipotent monodromy points. More precisely, we will work with the varieties V_{12} , V_{16} , V_{18} and " R_1 ", where the first three are rank 1 Fanos appearing in the work of Golyshev and the latter is a rank 4 threefold with $-K^3 = 24$ (K the canonical divisor). The involutions for these LG models have essentially been described by Golyshev. In the presence of an involution, it is possible to move the degeneracy locus of a higher cycle from the fiber over 0 to its involute, a property which we use for the construction of the desired normal function.

Definition (GOLYSHEV-2009)

Given a linear homogeneous recurrence R and two solutions $a_n, b_n \in \mathbb{Q}$ with $a_0 = 1, b_0 = 0, b_1 = 1$, if there is a L-function L(x) and $c \in \mathbb{Q}^*$ such that:

$$\lim \frac{b_n}{a_n} = cL(x_0) \tag{4}$$

We say that yhe limit above is the Apéry constant of R.

Golyshev uses quantum recurrences of the threefolds V_{10} , V_{12} , V_{14} , V_{16} , V_{18} to find Apéry constants; his method is basically to use a result of Beukers for the rational cases and apply a different approach for the non-rational ones. In the course of the proof of his results, he also describes the involution we mentioned above.

We will prove the following:

Theorem

Let X be a Fano threefold, in the special class described above. Then there is a higher normal function \mathcal{N} , arising from a family of motivic cohomology classes on the fibers of the LG model, such that the Apéry constant is equal to $\mathcal{N}(0)$.

We need this definition first:

Definition

For X_t a general K3 surface of the family induced by a Minkowski polynomial ϕ , let $X_t^* = X_t \cap (\mathbb{C}^*)^3$; then ϕ is tempered if the image of the higher Chow cycle $\xi_t := \langle x, y, z \rangle_{X_t^*} \in CH^3(X_t^*, 3)$ under all residue maps vanishes.

Let X be one of the threefolds V_{12} , V_{16} , V_{18} , R_1 . Associated to X is a Newton polytope Δ , and to the latter we associate a Minkowski polynomial ϕ . We have that ϕ is tempered, and the family of higher Chow cycles lifts to a class $[\Xi] \in CH^3(\mathcal{X}^\circ, 3)$, yielding by restriction a family of motivic cohomology classes $[\Xi_t] \in H^3_{\mathcal{M}}(X_t, \mathbb{Q}(3))$ on the Landau-Ginzburg model. The local system $\mathbb{V} = R^2_{tr} \pi_* \mathbb{Z}$ associated to the Landau-Ginzburg model of X has the following singular points:

•
$$V_{12}$$
: $t = 0, 17 \pm 12\sqrt{2}, \infty$

•
$$V_{16}$$
: $t = 0, 12 \pm 8\sqrt{2}, \infty$

•
$$V_{18}$$
 : $t = 0, 9 \pm 6\sqrt{3}, \infty$

▶ R_1 : $t = 0, 4, 16, \infty$

In each case, we have an involution $\iota(t) = \frac{M}{t}$, $(M = 1, \frac{1}{16}, \frac{-1}{27}, 64)$, exchanging say t_1 and t_2 with $0 < |t_1| < |t_2| < \infty$. The involution ι gives then a correspondence $I \in Z^2(\mathcal{X} \times \iota^* \mathcal{X})$ which gives a rational isomorphism between \mathbb{V} and $\iota^* \mathbb{V}$.

Now let $\tilde{\Xi} := I^* \Xi \in H^3_{\mathcal{M}}(\mathcal{X}_\circ, \mathbb{Q}(3))$ be the pullback of the cycle, with fiberwise slices $\tilde{\Xi}_t$. If AJ is the Abel-Jacobi map as above, then

$$AJ^{3,3}([\tilde{\Xi}_t]) \in H^2(X_t, \mathbb{C}/\mathbb{Q}(3)).$$
(5)

Taking \mathcal{R}_t to be any lift of this class to $H^2(X_t, \mathbb{C})$, and letting $\omega_t = \frac{1}{(2\pi i)^2} \operatorname{Res}_{X_t} \left(\frac{\frac{dx_1}{x_1} \wedge \frac{dx_2}{x_2} \wedge \frac{dx_3}{x_3}}{1-t\phi} \right)$; we may define a normal function by:

$$\mathcal{N}(t) := \langle \mathcal{R}_t, \omega_t \rangle \tag{6}$$

We have that:

$$D_{PF}(\mathcal{N}(t)) = kt, k \in \mathbb{Q}^*.$$
 (7)

If $A(t) = \sum a_n t^n$ is the period sequence, then $B(t) = \sum b_n t^n = -\mathcal{N}(t) + A(t)\mathcal{N}(0)$ is another solution for the Picard-Fuchs equation, so that

$$\mathcal{N}(t) = \sum (a_n \mathcal{N}(0) - b_n) t^n.$$

Since the radii of convergence for the generating series of a_n and b_n are both $|t_1| < |t_2|$, while that of $a_n \mathcal{N}(0) - b_n$ is $|t_2|$, it follows that $\frac{b_n}{a_n} \to \mathcal{N}(0)$, which finishes the proof of the theorem.

As a corollary we have:

Corollary

 $\mathcal{N}(0)$ is (up to $\mathbb{Q}(3)$) a multiple of $\zeta(3)$.

The proof is a direct consequence of the following commutative diagram (After the work of Kerr-Lewis):

$$\begin{array}{cccc} \mathcal{H}^{3}_{\mathcal{M}}(X_{0},\mathbb{Q}(3)) & \stackrel{\cong}{\longrightarrow} & \mathcal{K}^{ind}_{5}(\mathbb{Q}) \\ & & & \downarrow_{AJ^{3,3}} & & \downarrow_{r_{b}} \\ \mathcal{J}^{3,3}(X_{0}) & \stackrel{\cong}{\longrightarrow} & \stackrel{\mathbb{C}}{\mathbb{Q}(3)} \end{array}$$

$$(8)$$

Where the lower isomorphism is the pairing with ω_0 and r_b is the Borel regulator. The Abel-Jacobi map then reduces to the Borel regulator and by Borel's theorem it has to be multiple of $\zeta(3)$.

There have been several constructions of family of varieties with exceptional monodromy group(Dettweiler-Reiter, Yun). In most cases, these constructions give Hodge structures with high weight. Nicholas Katz was the first to obtain Hodge structures with low weight(Hodge numbers not spread out) and geometric monodromy group G_2 . In last part of this presentation I will describe Katz's construction and give a geometric proof that the geometric monodromy group of the family constructed by him is G_2 .

In his work, Katz describes 4 families, 3 of which have G_2 as geometric monodromy group. For the sake of simplicity, I will work with one of the 3 families, but the exact same approach applies to the remaining two in which G_2 occurs.

Let $\mathcal{E} \to \mathbb{P}^1$: $y^2 = x(x-1)(x-z^2)$ be a rational elliptic surface with singular fibers at $z = -1, 0, 1, \infty$. For $t \neq 0, \pm \frac{2}{3\sqrt{3}}, \infty$, take a base change by:

$$E_t \to \mathbb{P}^1: w^2 = tz(z-1)(z+1) + t^2$$
 (9)

The result is a family of elliptic surfaces $X_t \rightarrow E_t$ with 7 singular fibers on each surface, as described below:

Proposition

For each X_t we have $dim(H_{tr}^2(X_t)) = 7$.

We now describe a particular choice of 7-dimensional basis of 2cycles that we will use henceforward. First, consider the 1-cycles $\alpha, \beta, \gamma_{-1}, \gamma_0, \gamma_1$ over each E_t , as described in figure 1. Denote by δ_1, δ_2 the basis for the local system over each point of E_t , with $\delta_1 \cdot \delta_2 = 1$.

Figure: 1-cycles over the Base E_t

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The local monodromies around -1, 0, 1 for the family $\mathcal{E} \to \mathbb{P}^1$: $y^2 = x(x-1)(x-z^2)$ are:

$$\widetilde{T}_{-1} = \begin{pmatrix} -3 & 8 \\ -2 & 5 \end{pmatrix} \\
\widetilde{T}_{0} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \\
\widetilde{T}_{1} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$
(11)

The vanishing cyle at each singular point is then:

- ► $2\delta_1 + \delta_2$ at -1
- ▶ δ₁ at 0
- ► δ₂ at 1

Figure: Cycles enclosing -1,0 and 1 in \mathbb{P}^1 minus the cuts.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Set $\eta_1 = \delta_2$ and $\eta_2 = 2\delta_1 + \delta_2$, so $\eta_1 \cdot \eta_2 = -2$ and the vanishing cycle at 0 is precisely $\frac{1}{2}(\eta_1 + \eta_2)$. We use henceforward the notation $a \times b$ to denote the 2-cycle on X_t obtained by taking the 1-cycle a on a fiber of π_t and continuing it along the 1-cycle b.

Now that our notation is stablished we proceed with the definition of our 7-dimensional basis of $H^2_{tr}(X_t)$:

$$A_{1} = \eta_{1} \times \alpha \quad C_{-1} = \eta_{2} \times \gamma_{-1}$$

$$A_{2} = \eta_{2} \times \alpha \qquad C_{0} = \frac{1}{2}(\eta_{1} + \eta_{2}) \times \gamma_{0}$$

$$B_{1} = \eta_{1} \times \beta \qquad C_{1} = \eta_{1} \times \gamma_{1}$$

$$B_{2} = \eta_{2} \times \beta$$
(12)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that, A_1, A_2, B_1, B_2 are trivially transcendental, the same is not true for the C_i . The reason is that the C_i may-in fact they do-contain algebraic cycles resulting from classes of singular fibers. To overcome this, we have to "add" enough cycles in order to make all C_i transcendental.

Figure: The 2-cycle C_{-1}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Now, we eliminate the algebraic components of C_{-1} . Set:

$$\widetilde{C}_{-1} := C_{-1} + aD_{-} + bD_{+} + cE_{-} + dE_{+}$$
(13)

After imposing the transcendency conditions we get:

$$\widetilde{C}_{-1} = C_{-1} + \frac{1}{2}D_{-} + -\frac{1}{2}E_{-}$$
(14)

By following the exact same reasoning, we deduce that:

$$\widetilde{C}_1 = C_1 + \frac{1}{2}G_- + -\frac{1}{2}H_-$$
(15)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where G_{-} and H_{-} are the components of the singular fibers of the endpoints.

Now we address C_0 , consider the figure 4. Following the idea above, we set:

$$\widetilde{C}_0 = C_0 + aL_1 + bL_2 + cL_3 - dF_1 - eF_2 - fF_3$$
 (16)

We again solve the system of equations required for transcendency to obtain:

$$\widetilde{C}_{0} = C_{0} + \frac{3}{4}L_{1} + \frac{1}{2}L_{2} + \frac{1}{4}L_{3} - \frac{3}{4}F_{1} - \frac{1}{2}F_{2} - \frac{1}{4}F_{3}$$
(17)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: The 2 cycle C

Э.

æ

Denote by V the space generated by the transcendental cycles $(A_1, A_2, B_1, B_2, \widetilde{C_{-1}}, \widetilde{C_0}, \widetilde{C_1})$. The intersection matrix is:

We now compute the monodromies matrices at the singular points $t_{-} := \frac{-2}{3\sqrt{3}}, 0, t_{+} := \frac{2}{3\sqrt{3}}, \infty$, restricted to the vector space V.

Figure: The 1-cycles α and β over the Elliptic curve E_t

Figure: The 1-cycles γ_{-1} , γ_0 and γ_1 over the Elliptic curve E_t .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Figure: The 1-cycles over the Elliptic curve E_t

When $t \to t_{\pm}$, we have a nodal degeneration on E_t . It's straightforward to conclude that in this case, the \tilde{C}_i remain unchanged. Moreover, the A_i, B_i change according to the Picard-Lefschetz formula, hence:

$$M_{+} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, M_{-} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The situation when $t \rightarrow 0$ is more subtle. If one looks at figure 7, the endpoints of the cuts behave roughly as $-1 - \frac{t}{2}$, t and $1 - \frac{t}{2}$, therefore when t go through a path around 0, the endpoints will certain move, but this time not in a nice way as they did in the case above, they will instead make the γ_i cycles cross each other and also α and β .

This is the α after we apply monodromy:

Figure: $\widetilde{\alpha}$, the resulting cycle after monodromy

This is the γ_0 after we apply monodromy:

Figure: $\widetilde{\gamma_0},$ the resulting cycle after monodromy

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Using the expression for the local monodromies, we arrive at:

$$M_0 = \begin{bmatrix} 1 & 2 & -2 & -2 & 2 & -1 & -2 \\ -2 & -3 & 6 & 2 & -4 & 3 & 6 \\ 2 & 6 & -3 & -2 & 6 & -3 & -4 \\ -2 & -2 & 2 & 1 & -2 & 1 & 2 \\ 0 & 0 & -4 & 0 & 1 & -2 & -4 \\ -4 & -4 & 4 & 4 & -4 & 1 & 4 \\ 0 & -4 & 0 & 0 & -4 & 2 & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Since we can rearrange the loops around t_- , 0, t_+ , ∞ so that their product is the identity, we naturally get the expression for M_{∞} as the inverse of the product $M_- \cdot M_0 \cdot M_+$, leading to:

$$M_{\infty} = \begin{bmatrix} 0 & -4 & 1 & 0 & -4 & 2 & 2 \\ 4 & 0 & 4 & 1 & -2 & 2 & 4 \\ -1 & 4 & -3 & -2 & 6 & -3 & -4 \\ 0 & -1 & 2 & 1 & -2 & 1 & 2 \\ -4 & 0 & -4 & 0 & 1 & -2 & -4 \\ 0 & 0 & 4 & 4 & -4 & 1 & 4 \\ 0 & -4 & 0 & 0 & -4 & 2 & 1 \end{bmatrix}$$

We can easily check that M_- , M_+ , M_0 , M_∞ preserve the intersection form Q, hence the subgroup $\Gamma \subset GL(7)$ they generate is in fact inside SO(3, 4).

We now describe the logarithm of the M_i . A quick computation shows that M_0 is semi-simple, hence the unipotent part of M_0 is the identity, so $N_0 = 0$. The remaining monodromies do have non trivial logarithms: M_+, M_- are actually unipotent and M_∞ is the only nonunipotent. We can easily check that M_∞^3 is unipotent though. If $M_\infty = M_s \cdot M_u$ is the Jordan-Chevalley decomposition and I is the 7x7 identity matrix, then:

$$N_{+} = M_{+} - I$$

$$N_{-} = M_{-} - I$$

$$N_{\infty} := \log(M_{u}) = \frac{1}{3}\log(M_{\infty}^{3})$$
(18)

We have the following theorem:

Theorem

The log-monodromies N_+ , N_- , N_∞ generate \mathfrak{g}_2 , therefore the geometric monodromy group for the Katz family is G_2 .

Proof: Consider the elements:

$$Y_{1} = [N_{-}, N_{+}] \quad Y_{8} = [Y_{5}, Y_{6}]$$

$$Y_{2} = [N_{-}, N_{\infty}] \quad Y_{9} = [N_{\infty}, Y_{5}]$$

$$Y_{3} = [N_{+}, N_{\infty}] \quad Y_{10} = [N_{\infty}, Y_{9}]$$

$$Y_{4} = [Y_{1}, Y_{2}] \quad Y_{11} = [N_{\infty}, Y_{10}] \quad (19)$$

$$Y_{5} = [Y_{1}, Y_{3}] \quad Y_{12} = [N_{+}, Y_{11}]$$

$$Y_{6} = [Y_{2}, Y_{3}] \quad Y_{13} = [N_{\infty}, Y_{12}]$$

$$Y_{7} = [Y_{2}, Y_{6}] \quad Y_{14} = [N_{-}, Y_{13}]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A quick computation shows that the elements N_- , N_+ , Y_1 , Y_4 , Y_5 , Y_6 , Y_7 , Y_8 , Y_9 , Y_{10} , Y_{11} , Y_{12} , Y_{13} , Y_{14} are linearly independent over \mathbb{Q} . Now define $t_1 := Y_1$ and $t_2 := [Y_4, Y_5]$, a direct computation gives us that $[t_1, t_2] = 0$, moreover they both are diagonalizable. Let ad(.)denotes the adjoint representation, if we act through $ad(t_i)$, i = 1, 2, on \mathfrak{g} , we get 14 linearly independent (simultaneous for t_1 , t_2) eigenvectors with 1-dimensional eigenspaces, moreover we have:

- 1 with eigenvalue -2
- 4 with eigenvalue -1
- 4 with eigenvalue 0
- 4 with eigenvalue 1
- 1 with eigenvalue 2

Which are in 1-1 correspondence with the roots of \mathfrak{g}_2 , therefore $\mathfrak{h} := \langle t_1, t_2 \rangle$ is a Cartan subalgebra and $\mathfrak{g} = \mathfrak{g}_2$.

Thanks!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>